論文の概要: Joint Forecasting of Features and Feature Motion for Dense Semantic
Future Prediction
- arxiv url: http://arxiv.org/abs/2101.10777v1
- Date: Tue, 26 Jan 2021 13:30:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-13 19:52:20.857016
- Title: Joint Forecasting of Features and Feature Motion for Dense Semantic
Future Prediction
- Title(参考訳): 密接な意味的未来予測のための特徴量と特徴運動の合同予測
- Authors: Josip \v{S}ari\'c and Sacha Vra\v{z}i\'c and Sini\v{s}a \v{S}egvi\'c
- Abstract要約: アプローチは、F2M(Feature-to-motion)とF2F(Feature-to-Feature)の2つのモジュールで構成される。
複合F2MFアプローチは、タスクに依存しない方法でノベルティの効果から運動の効果を分離する。
セマンティックセグメンテーション、インスタンスレベルのセグメンテーション、パンオプティカルセグメンテーションの3つの高密度予測タスクの実験を行います。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel dense semantic forecasting approach which is applicable to
a variety of architectures and tasks. The approach consists of two modules.
Feature-to-motion (F2M) module forecasts a dense deformation field which warps
past features into their future positions. Feature-to-feature (F2F) module
regresses the future features directly and is therefore able to account for
emergent scenery. The compound F2MF approach decouples effects of motion from
the effects of novelty in a task-agnostic manner. We aim to apply F2MF
forecasting to the most subsampled and the most abstract representation of a
desired single-frame model. Our implementations take advantage of deformable
convolutions and pairwise correlation coefficients across neighbouring time
instants. We perform experiments on three dense prediction tasks: semantic
segmentation, instance-level segmentation, and panoptic segmentation. The
results reveal state-of-the-art forecasting accuracy across all three
modalities on the Cityscapes dataset.
- Abstract(参考訳): 本稿では,様々なアーキテクチャやタスクに適用可能な,新しい意味予測手法を提案する。
アプローチは2つのモジュールで構成される。
特徴と動き(F2M)モジュールは、過去の特徴を将来の位置に警告する高密度変形場を予測します。
F2F(Feature-to-Feature)モジュールは、将来の機能を直接回帰するため、創発的なシーンを説明できる。
複合F2MFアプローチは、タスクに依存しない方法でノベルティの効果から運動の効果を分離する。
我々は、F2MF予測を最もサブサンプル化され、望まれる単一フレームモデルの最も抽象的な表現に適用することを目指している。
我々の実装では、変形可能な畳み込みと対関係係数を隣り合った時間インスタント間で活用する。
セマンティックセグメンテーション、インスタンスレベルのセグメンテーション、パンオプティカルセグメンテーションの3つの高密度予測タスクの実験を行います。
結果は、Cityscapesデータセット上の3つのモードすべてにわたる最先端の予測精度を明らかにした。
関連論文リスト
- PCF-Lift: Panoptic Lifting by Probabilistic Contrastive Fusion [80.79938369319152]
我々は,PCF(Probabilis-tic Contrastive Fusion)に基づくPCF-Liftという新しいパイプラインを設計する。
私たちのPCFリフトは、ScanNetデータセットやMessy Roomデータセット(シーンレベルのPQが4.4%改善)など、広く使用されているベンチマークにおいて、最先端の手法よりも大幅に優れています。
論文 参考訳(メタデータ) (2024-10-14T16:06:59Z) - SkelFormer: Markerless 3D Pose and Shape Estimation using Skeletal Transformers [57.46911575980854]
マルチビュー人間のポーズと形状推定のための新しいマーカーレスモーションキャプチャパイプラインであるSkelFormerを紹介する。
提案手法は,まず市販の2次元キーポイント推定器を用いて,大規模インザミルドデータに基づいて事前トレーニングを行い,3次元関節位置を求める。
次に、重雑音観測から、関節の位置をポーズと形状の表現にマッピングする回帰に基づく逆運動性骨格変換器を設計する。
論文 参考訳(メタデータ) (2024-04-19T04:51:18Z) - FFINet: Future Feedback Interaction Network for Motion Forecasting [46.247396728154904]
本稿では、軌道予測のための現在の観測と潜在的な未来の相互作用を集約する、新しいFuture Feedback Interaction Network(FFINet)を提案する。
我々のFFINetはArgoverse 1とArgoverse 2の動作予測ベンチマークの最先端性能を実現している。
論文 参考訳(メタデータ) (2023-11-08T07:57:29Z) - Multi-body SE(3) Equivariance for Unsupervised Rigid Segmentation and
Motion Estimation [49.56131393810713]
本稿では、SE(3)同変アーキテクチャと、この課題に教師なしで取り組むためのトレーニング戦略を提案する。
本手法は,0.25Mパラメータと0.92G FLOPを用いて,モデル性能と計算効率を両立させる。
論文 参考訳(メタデータ) (2023-06-08T22:55:32Z) - Video Semantic Segmentation with Inter-Frame Feature Fusion and
Inner-Frame Feature Refinement [39.06589186472675]
マルチフレーム特徴量間の密接なペア関係をモデル化するための時空間融合(STF)モジュールを提案する。
さらに,セマンティックバウンダリ間の困難な予測に対処するために,メモリ拡張改良(MAR)モジュールを提案する。
論文 参考訳(メタデータ) (2023-01-10T07:57:05Z) - Part-guided Relational Transformers for Fine-grained Visual Recognition [59.20531172172135]
識別的特徴を学習し,特徴変換モジュールとの相関関係を探索するフレームワークを提案する。
提案手法は,3-of-the-levelオブジェクト認識において,部分ブランチの追加に頼らず,最先端の性能に達する。
論文 参考訳(メタデータ) (2022-12-28T03:45:56Z) - DeepMLE: A Robust Deep Maximum Likelihood Estimator for Two-view
Structure from Motion [9.294501649791016]
動きからの2次元構造(SfM)は3次元再構成と視覚SLAM(vSLAM)の基礎となる。
本稿では,2視点SfM問題を最大最大推定(MLE)として定式化し,DeepMLEと表記されるフレームワークを用いて解いた。
提案手法は,最先端の2ビューSfM手法よりも精度と一般化能力において優れる。
論文 参考訳(メタデータ) (2022-10-11T15:07:25Z) - Joint Forecasting of Panoptic Segmentations with Difference Attention [72.03470153917189]
シーン内の全てのオブジェクトを共同で予測する新しいパノプティックセグメンテーション予測モデルについて検討する。
提案したモデルをCityscapesとAIODriveデータセット上で評価する。
論文 参考訳(メタデータ) (2022-04-14T17:59:32Z) - MUSE-VAE: Multi-Scale VAE for Environment-Aware Long Term Trajectory
Prediction [28.438787700968703]
条件付きMUSEは、現在の最先端技術と比較して、多様かつ同時に正確な予測を提供する。
我々は、新しい合成データセットであるPFSDと同様に、nuScenesとSDDベンチマークに関する包括的な実験を通してこれらのアサーションを実証する。
論文 参考訳(メタデータ) (2022-01-18T18:40:03Z) - Panoptic Segmentation Forecasting [71.75275164959953]
我々の目標は、最近の観測結果から近い将来の予測を行うことです。
この予測能力、すなわち予測能力は、自律的なエージェントの成功に不可欠なものだと考えています。
そこで我々は,2成分モデルを構築した。一方のコンポーネントは,オードメトリーを予測して背景物の力学を学習し,他方のコンポーネントは検出された物の力学を予測する。
論文 参考訳(メタデータ) (2021-04-08T17:59:16Z) - Multi-Person Pose Estimation with Enhanced Feature Aggregation and
Selection [33.15192824888279]
複数人物のポーズ推定のためのEFASNet(Enhanced Feature Aggregation and Selection Network)を提案する。
我々の手法は、混み合った、散らばった、ぎこちないシーンをうまく扱える。
総合的な実験により、提案手法は最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-03-20T08:33:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。