論文の概要: Dynamic cyber risk estimation with Competitive Quantile Autoregression
- arxiv url: http://arxiv.org/abs/2101.10893v1
- Date: Mon, 25 Jan 2021 16:52:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-14 18:56:32.274109
- Title: Dynamic cyber risk estimation with Competitive Quantile Autoregression
- Title(参考訳): 競争的質的自己回帰による動的サイバーリスク推定
- Authors: Raisa Dzhamtyrova and Carsten Maple
- Abstract要約: 効果的なリスクフレームワークは、潜在的な有害事象を予測、評価、緩和する可能性がある。
時系列データに利用可能なVaR(Value-at-Risk)のモデリング手法を提案する。
これらの手法は,カバレッジテストを実行することで,サイバーハッキング攻撃の規模と発生時間を予測することができることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cyber risk estimation is an essential part of any information technology
system's design and governance since the cost of the system compromise could be
catastrophic. An effective risk framework has the potential to predict, assess,
and mitigate possible adverse events. We propose two methods for modelling
Value-at-Risk (VaR) which can be used for any time-series data. The first
approach is based on Quantile Autoregression (QAR), which can estimate VaR for
different quantiles, i.e. confidence levels. The second method, called
Competitive Quantile Autoregression (CQAR), dynamically re-estimates cyber risk
as soon as new data becomes available. This method provides a theoretical
guarantee that it asymptotically performs as well as any QAR at any time point
in the future. We show that these methods can predict the size and
inter-arrival time of cyber hacking breaches by running coverage tests. The
proposed approaches allow to model a separate stochastic process for each
significance level and therefore provide more flexibility compared to
previously proposed techniques. We provide a fully reproducible code used for
conducting the experiments.
- Abstract(参考訳): サイバーリスクの推定は、システム妥協のコストが壊滅的である可能性があるため、あらゆる情報技術システムの設計とガバナンスの重要な部分です。
効果的なリスクフレームワークは、潜在的な有害事象を予測、評価、緩和する可能性がある。
時系列データに利用可能なVaR(Value-at-Risk)のモデリング手法を提案する。
最初のアプローチはQuantile Autoregression (QAR)に基づいており、VaRは異なる量子要素、すなわちVaRを推定できる。
信頼レベルだ
第2の方法は、CQAR(Competitive Quantile Autoregression)と呼ばれ、新しいデータが利用可能になったらすぐに、動的にサイバーリスクを見積もる。
この方法は、将来任意の時点におけるQARと同様に漸近的に機能することを理論的に保証する。
これらの手法は,カバレッジテストを実行することで,サイバーハッキング攻撃の規模と発生時間を予測することができることを示す。
提案手法は,各重要度レベルで分離した確率過程をモデル化できるため,提案手法に比べて柔軟性が向上する。
実験に使用する完全な再現可能なコードを提供する。
関連論文リスト
- Sequential Manipulation Against Rank Aggregation: Theory and Algorithm [119.57122943187086]
脆弱なデータ収集プロセスに対するオンライン攻撃を活用します。
ゲーム理論の観点からは、対決シナリオは分布的に堅牢なゲームとして定式化される。
提案手法は,ランクアグリゲーション手法の結果を逐次的に操作する。
論文 参考訳(メタデータ) (2024-07-02T03:31:21Z) - Distribution-free risk assessment of regression-based machine learning
algorithms [6.507711025292814]
我々は回帰アルゴリズムとモデル予測の周囲に定義された区間内に存在する真のラベルの確率を計算するリスク評価タスクに焦点をあてる。
そこで,本研究では,正のラベルを所定の確率で含むことが保証される予測区間を提供する共形予測手法を用いてリスク評価問題を解決する。
論文 参考訳(メタデータ) (2023-10-05T13:57:24Z) - Learning Disturbances Online for Risk-Aware Control: Risk-Aware Flight
with Less Than One Minute of Data [33.7789991023177]
安全クリティカルなリスク認識制御の最近の進歩は、システムが直面する可能性のある障害に関するアプリオリの知識に基づいている。
本稿では,リスク認識型オンラインコンテキストにおいて,これらの障害を効果的に学習する手法を提案する。
論文 参考訳(メタデータ) (2022-12-12T21:40:23Z) - Risk-Averse No-Regret Learning in Online Convex Games [19.4481913405231]
リスク回避エージェントを備えたオンラインゲームは,コストの大幅な増大のリスクを最小限に抑える最適な決定を学習することを目的としている。
コスト関数の分布は一般に観測不可能なすべてのエージェントの作用に依存するため、コストの条件付値(CVaR)の計算は困難である。
CVaR値を用いて計算したCVaR勾配の1点ゼロ次推定に依存する新しいオンラインリスク逆学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-16T21:36:47Z) - A New Approach for Interpretability and Reliability in Clinical Risk
Prediction: Acute Coronary Syndrome Scenario [0.33927193323747895]
我々は、リスクスコアと機械学習モデルの両方の最高の特徴を組み合わせた、新たなリスクアセスメント方法論を作成するつもりです。
提案手法は、標準LRと同一の試験結果を得たが、より優れた解釈性とパーソナライゼーションを提供する。
個人予測の信頼性推定は誤分類率と大きな相関を示した。
論文 参考訳(メタデータ) (2021-10-15T19:33:46Z) - CC-Cert: A Probabilistic Approach to Certify General Robustness of
Neural Networks [58.29502185344086]
安全クリティカルな機械学習アプリケーションでは、モデルを敵の攻撃から守ることが不可欠である。
意味的に意味のある入力変換に対して、ディープラーニングモデルの証明可能な保証を提供することが重要である。
我々はChernoff-Cramer境界に基づく新しい普遍確率的証明手法を提案する。
論文 参考訳(メタデータ) (2021-09-22T12:46:04Z) - Certifiers Make Neural Networks Vulnerable to Availability Attacks [70.69104148250614]
私たちは初めて、逆転戦略が敵によって意図的に引き起こされる可能性があることを示します。
いくつかの入力や摂動のために自然に発生する障害に加えて、敵は故意にフォールバックを誘発するために訓練時間攻撃を使用することができる。
我々は2つの新しいアベイラビリティーアタックを設計し、これらの脅威の実用的妥当性を示す。
論文 参考訳(メタデータ) (2021-08-25T15:49:10Z) - Learning Probabilistic Ordinal Embeddings for Uncertainty-Aware
Regression [91.3373131262391]
不確かさが唯一の確実性である。
伝統的に、直接回帰定式化を考慮し、ある確率分布の族に出力空間を変更することによって不確実性をモデル化する。
現在のレグレッション技術における不確実性をモデル化する方法は、未解決の問題である。
論文 参考訳(メタデータ) (2021-03-25T06:56:09Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z) - PrognoseNet: A Generative Probabilistic Framework for Multimodal
Position Prediction given Context Information [2.5302126831371226]
本稿では,予測問題を分類タスクとして再構成し,強力なツールを実現する手法を提案する。
潜在変数のスマートな選択は、分類問題と非常に単純化された回帰問題の組み合わせとして、ログ様関数の再構成を可能にする。
提案手法は文脈情報を容易に組み込むことができ、データの事前処理は不要である。
論文 参考訳(メタデータ) (2020-10-02T06:13:41Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
本稿では,リスクに敏感な最適制御に基づく安全な群集ロボットインタラクションのためのオンラインフレームワークを提案し,そのリスクをエントロピーリスク尺度でモデル化する。
私たちのモジュラーアプローチは、クラウドとロボットの相互作用を学習ベースの予測とモデルベースの制御に分離します。
シミュレーション研究と実世界の実験により、このフレームワークは、現場にいる50人以上の人間との衝突を避けながら、安全で効率的なナビゲーションを実現することができることが示された。
論文 参考訳(メタデータ) (2020-09-12T02:02:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。