A SPA-based Manifold Learning Framework for Motor Imagery EEG Data
Classification
- URL: http://arxiv.org/abs/2108.00865v1
- Date: Fri, 30 Jul 2021 06:18:05 GMT
- Title: A SPA-based Manifold Learning Framework for Motor Imagery EEG Data
Classification
- Authors: Xiangyun Li, Peng Chen, Zhanpeng Bao
- Abstract summary: This paper proposes a manifold learning framework to classify two types of EEG data from motor imagery (MI) tasks.
For feature extraction, it is implemented by Common Spatial Pattern (CSP) from the preprocessed EEG signals.
In the neighborhoods of the features for classification, the local approximation to the support of the data is obtained, and then the features are assigned to the classes with the closest support.
- Score: 2.4727719996518487
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The electroencephalography (EEG) signal is a non-stationary, stochastic, and
highly non-linear bioelectric signal for which achieving high classification
accuracy is challenging, especially when the number of subjects is limited. As
frequently used solution, classifiers based on multilayer neural networks has
to be implemented without large training data sets and careful tuning. This
paper proposes a manifold learning framework to classify two types of EEG data
from motor imagery (MI) tasks by discovering lower dimensional geometric
structures. For feature extraction, it is implemented by Common Spatial Pattern
(CSP) from the preprocessed EEG signals. In the neighborhoods of the features
for classification, the local approximation to the support of the data is
obtained, and then the features are assigned to the classes with the closest
support. A spherical approximation (SPA) classifier is created using spherelets
for local approximation, and the extracted features are classified with this
manifold-based method. The SPA classifier achieves high accuracy in the 2008
BCI competition data, and the analysis shows that this method can significantly
improve the decoding accuracy of MI tasks and exhibit strong robustness for
small sample datasets. It would be simple and efficient to tune the
two-parameters classifier for the online brain-computer interface(BCI)system.
Related papers
- Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
We propose an unsupervised approach leveraging EEG signal physics.
We map EEG channels to fixed positions using field, source-free domain adaptation.
Our method demonstrates robust performance in brain-computer interface (BCI) tasks and potential biomarker applications.
arXiv Detail & Related papers (2024-03-07T16:17:33Z) - Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
We introduce a semi-supervised learning approach based on topological projections in self-organizing maps (SOMs)
Our proposed method first trains SOMs on unlabeled data and then a minimal number of available labeled data points are assigned to key best matching units (BMU)
Our results indicate that the proposed minimally supervised model significantly outperforms traditional regression techniques.
arXiv Detail & Related papers (2024-01-12T22:51:48Z) - Few-Shot Specific Emitter Identification via Deep Metric Ensemble
Learning [26.581059299453663]
We propose a novel FS-SEI for aircraft identification via automatic dependent surveillance-broadcast (ADS-B) signals.
Specifically, the proposed method consists of feature embedding and classification.
Simulation results show that if the number of samples per category is more than 5, the average accuracy of our proposed method is higher than 98%.
arXiv Detail & Related papers (2022-07-14T01:09:22Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - Adaptive Template Enhancement for Improved Person Recognition using
Small Datasets [0.9668407688201358]
A novel instance-based method for the classification of electroencephalography (EEG) signals is presented and evaluated in this paper.
The proposed adaptive template enhancement mechanism transforms the feature-level instances by treating each feature dimension separately.
The proposed approach demonstrates significantly improved classification accuracy in both identification and verification scenarios.
arXiv Detail & Related papers (2022-01-03T10:14:38Z) - An Efficient Epileptic Seizure Detection Technique using Discrete
Wavelet Transform and Machine Learning Classifiers [0.0]
This paper presents an epilepsy detection method based on discrete wavelet transform (DWT) and Machine learning classifiers.
DWT has been used for feature extraction as it provides a better decomposition of the signals in different frequency bands.
arXiv Detail & Related papers (2021-09-26T18:30:04Z) - Motor Imagery Classification based on CNN-GRU Network with
Spatio-Temporal Feature Representation [22.488536453952964]
Recently various deep neural networks have been applied to electroencephalogram (EEG) signal.
EEG is a brain signal that can be acquired in a non-invasive way and has a high temporal resolution.
As the EEG signal has a high dimension of classification feature space, appropriate feature extraction methods are needed to improve performance.
arXiv Detail & Related papers (2021-07-15T01:05:38Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
A central challenge in training classification models in the real-world federated system is learning with non-IID data.
We propose a novel and simple algorithm called Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated ssian mixture model.
Experimental results demonstrate that CCVR state-of-the-art performance on popular federated learning benchmarks including CIFAR-10, CIFAR-100, and CINIC-10.
arXiv Detail & Related papers (2021-06-09T12:02:29Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
This paper proposes a novel convolutional neural network (CNN) architecture for accurate and robust EEG-based motor imagery (MI) classification.
The proposed CNN model, namely EEG-Inception, is built on the backbone of the Inception-Time network.
The proposed network is an end-to-end classification, as it takes the raw EEG signals as the input and does not require complex EEG signal-preprocessing.
arXiv Detail & Related papers (2021-01-24T19:03:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.