論文の概要: Incremental Search Space Construction for Machine Learning Pipeline
Synthesis
- arxiv url: http://arxiv.org/abs/2101.10951v1
- Date: Tue, 26 Jan 2021 17:17:49 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-13 19:48:02.343918
- Title: Incremental Search Space Construction for Machine Learning Pipeline
Synthesis
- Title(参考訳): 機械学習パイプライン合成のためのインクリメンタル検索空間の構築
- Authors: Marc-Andr\'e Z\"oller, Tien-Dung Nguyen, Marco F. Huber
- Abstract要約: automated machine learning(automl)は、マシンラーニング(ml)パイプラインの自動構築を目的とする。
パイプライン構築のためのメタ機能に基づくデータ中心アプローチを提案する。
確立されたAutoMLベンチマークで使用した28データセットに対して,アプローチの有効性と競争性を実証する。
- 参考スコア(独自算出の注目度): 4.060731229044571
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated machine learning (AutoML) aims for constructing machine learning
(ML) pipelines automatically. Many studies have investigated efficient methods
for algorithm selection and hyperparameter optimization. However, methods for
ML pipeline synthesis and optimization considering the impact of complex
pipeline structures containing multiple preprocessing and classification
algorithms have not been studied thoroughly. In this paper, we propose a
data-centric approach based on meta-features for pipeline construction and
hyperparameter optimization inspired by human behavior. By expanding the
pipeline search space incrementally in combination with meta-features of
intermediate data sets, we are able to prune the pipeline structure search
space efficiently. Consequently, flexible and data set specific ML pipelines
can be constructed. We prove the effectiveness and competitiveness of our
approach on 28 data sets used in well-established AutoML benchmarks in
comparison with state-of-the-art AutoML frameworks.
- Abstract(参考訳): automated machine learning(automl)は、マシンラーニング(ml)パイプラインの自動構築を目的とする。
多くの研究でアルゴリズム選択とハイパーパラメータ最適化の効率的な手法が研究されている。
しかし、複数の前処理と分類アルゴリズムを含む複雑なパイプライン構造の影響を考慮したMLパイプライン合成と最適化の手法は、十分に研究されていない。
本稿では,人間の行動に触発されたパイプライン構築とハイパーパラメータ最適化のためのメタ機能に基づくデータ中心アプローチを提案する。
中間データセットのメタ機能と組み合わせ、パイプライン検索空間を段階的に拡張することで、パイプライン構造検索空間を効率化することができます。
これにより、フレキシブルでデータセット固有のMLパイプラインを構築することができる。
既存のAutoMLフレームワークと比較して,確立されたAutoMLベンチマークで使用される28のデータセットに対するアプローチの有効性と競争性を実証する。
関連論文リスト
- LLM-based Optimization of Compound AI Systems: A Survey [64.39860384538338]
複合AIシステムでは、LLMコール、レトリバー、コードインタプリタ、ツールなどのコンポーネントが相互接続される。
近年の進歩により, LLM を用いたパラメータのエンドツーエンド最適化が可能となった。
本稿では,複合AIシステムのLCMに基づく最適化の原理と動向について述べる。
論文 参考訳(メタデータ) (2024-10-21T18:06:25Z) - AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
自動機械学習(Automated Machine Learning, ML)は、開発パイプライン内のタスクを自動化することによって、AI開発を加速する。
近年の作業では,そのような負担を軽減するために,大規模言語モデル(LLM)の利用が始まっている。
本稿では,フルパイプのAutoMLに適した新しいマルチエージェントフレームワークであるAutoML-Agentを提案する。
論文 参考訳(メタデータ) (2024-10-03T20:01:09Z) - Deep Pipeline Embeddings for AutoML [11.168121941015015]
AutoMLは、最小限の人間の専門知識で機械学習システムを自動デプロイすることで、AIを民主化するための有望な方向である。
既存のパイプライン最適化テクニックでは、パイプラインステージ/コンポーネント間の深いインタラクションを探索できない。
本稿では,機械学習パイプラインのコンポーネント間のディープインタラクションをキャプチャするニューラルアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-05-23T12:40:38Z) - AutoEn: An AutoML method based on ensembles of predefined Machine
Learning pipelines for supervised Traffic Forecasting [1.6242924916178283]
交通予測(TF)は、将来の交通状況を予測することで交通渋滞を緩和する能力により、関連性が高まっている。
TFは、モデル選択問題(MSP)として知られる機械学習パラダイムに大きな課題を提起する。
事前に定義されたMLパイプラインの集合からマルチクラス化アンサンブルを自動生成する,シンプルで効率的な手法であるAutoEnを紹介する。
論文 参考訳(メタデータ) (2023-03-19T18:37:18Z) - Towards Personalized Preprocessing Pipeline Search [52.59156206880384]
ClusterP3Sは、Clusteringを介してパイプライン検索をパーソナライズする新しいフレームワークである。
本稿では,クラスタを協調的に学習し,最適なパイプラインを探索するための階層的探索手法を提案する。
ベンチマーク分類データセットの実験では、機能的に前処理可能なパイプライン探索の有効性が示されている。
論文 参考訳(メタデータ) (2023-02-28T05:45:05Z) - Efficient Non-Parametric Optimizer Search for Diverse Tasks [93.64739408827604]
興味のあるタスクを直接検索できる,スケーラブルで汎用的なフレームワークを初めて提示する。
基礎となる数学表現の自然木構造に着想を得て、空間を超木に再配置する。
我々は,モンテカルロ法を木探索に適用し,レジェクションサンプリングと等価形状検出を備える。
論文 参考訳(メタデータ) (2022-09-27T17:51:31Z) - SubStrat: A Subset-Based Strategy for Faster AutoML [5.833272638548153]
SubStratは、設定スペースではなく、データサイズに取り組むAutoML最適化戦略である。
既存のAutoMLツールをラップし、データセット全体を直接実行する代わりに、SubStratは遺伝的アルゴリズムを使用して小さなサブセットを見つける。
その後、小さなサブセットにAutoMLツールを使用し、最後に、大きなデータセット上で制限された、はるかに短いAutoMLプロセスを実行することで、結果のパイプラインを洗練する。
論文 参考訳(メタデータ) (2022-06-07T07:44:06Z) - SapientML: Synthesizing Machine Learning Pipelines by Learning from
Human-Written Solutions [28.718446733713183]
既存のデータセットとその人手によるパイプラインのコーパスから学習できるAutoML SapientMLを提案する。
我々は、170のデータセットにまたがる1094のパイプラインのトレーニングコーパスを作成し、41のベンチマークデータセットでSapientMLを評価した。
我々の評価によると、SapientMLは27のベンチマークでベストまたは同等の精度で、第2のツールでは9のインスタンスでパイプラインを生成できない。
論文 参考訳(メタデータ) (2022-02-18T20:45:47Z) - VolcanoML: Speeding up End-to-End AutoML via Scalable Search Space
Decomposition [57.06900573003609]
VolcanoMLは、大規模なAutoML検索スペースを小さなものに分解するフレームワークである。
最新のデータベースシステムでサポートされているような、Volcanoスタイルの実行モデルをサポートしている。
評価の結果,VolcanoMLは,AutoMLにおける検索空間分解の表現性を向上するだけでなく,分解戦略の実際の発見につながることが示された。
論文 参考訳(メタデータ) (2021-07-19T13:23:57Z) - Designing Machine Learning Pipeline Toolkit for AutoML Surrogate
Modeling Optimization [18.82755278152806]
我々は、複雑な機械学習パイプライン構造の作成と評価を容易にするAMLPツールキットを作成する。
AMLPを使って最適なパイプラインシグネチャを見つけ、それらをデータマイニングし、これらのデータマイニング機能を使って学習と予測を高速化します。
我々は、AMLP計算時間5分未満で4時間の予算で他のAutoMLアプローチよりも優れたサロゲートモデリングを備えた2段階パイプライン最適化をAMLPで作成した。
論文 参考訳(メタデータ) (2021-07-02T20:06:40Z) - Automated Evolutionary Approach for the Design of Composite Machine
Learning Pipelines [48.7576911714538]
提案手法は、複合機械学習パイプラインの設計を自動化することを目的としている。
パイプラインをカスタマイズ可能なグラフベースの構造で設計し、得られた結果を分析して再生する。
このアプローチのソフトウェア実装は、オープンソースフレームワークとして紹介されている。
論文 参考訳(メタデータ) (2021-06-26T23:19:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。