Error-correcting entanglement swapping using a practical logical photon
encoding
- URL: http://arxiv.org/abs/2101.11082v4
- Date: Fri, 10 Sep 2021 11:46:12 GMT
- Title: Error-correcting entanglement swapping using a practical logical photon
encoding
- Authors: Paul Hilaire, Edwin Barnes, Sophia E. Economou, Fr\'ed\'eric Grosshans
- Abstract summary: Quantum networks, modular and fusion-based quantum computing rely crucially on the ability to perform photonic Bell state measurements.
Here, we develop protocols that overcome these two key challenges through logical encoding of photonic qubits.
Our approach uses a tree graph state logical encoding, which can be produced deterministically with a few quantum emitters, and achieves near-deterministic photonic Bell state measurements while also protecting against errors including photon losses, with a record loss-tolerance threshold.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Several emerging quantum technologies, including quantum networks, modular
and fusion-based quantum computing, rely crucially on the ability to perform
photonic Bell state measurements. Therefore, photon losses and the 50\% success
probablity upper bound of Bell state measurements pose a critical limitation to
photonic quantum technologies. Here, we develop protocols that overcome these
two key challenges through logical encoding of photonic qubits. Our approach
uses a tree graph state logical encoding, which can be produced
deterministically with a few quantum emitters, and achieves near-deterministic
logical photonic Bell state measurements while also protecting against errors
including photon losses, with a record loss-tolerance threshold.
Related papers
- Photonic Quantum Receiver Attaining the Helstrom Bound [0.9674145073701151]
We propose an efficient decomposition scheme for a quantum receiver that attains the Helstrom bound in the low-photon regime for discriminating binary coherent states.
We account for realistic conditions by examining the impact of photon loss and imperfect photon detection, including the presence of dark counts.
Our scheme motivates testing quantum advantages with cubic-phase gates and designing photonic quantum computers to optimize symbol-by-symbol measurements in optical communication.
arXiv Detail & Related papers (2024-10-29T07:08:39Z) - Tailoring fusion-based photonic quantum computing schemes to quantum emitters [0.0]
Fusion-based quantum computation is a promising quantum computing model where small-sized photonic resource states are simultaneously entangled and measured by fusion gates.
Here, we propose fusion-based architectures tailored to the capabilities and noise models in quantum emitters.
We show that high tolerance to dominant physical error mechanisms can be achieved, with fault-tolerance thresholds of 8% for photon loss, 4% for photon distinguishability between emitters, and spin noise thresholds well above memory-induced errors.
arXiv Detail & Related papers (2024-10-09T11:31:49Z) - Deterministic generation of concatenated graph codes from quantum emitters [0.0]
Concatenation of a fault-tolerant construction with a code able to efficiently correct loss is a promising approach to achieve this.
We propose schemes for generatingd graph codes using multi-photon emission from two quantum emitters or a single quantum emitter coupled to a memory.
We show that these schemes enable fault-tolerant fusion-based quantum regimes in practical computation with high photon loss and standard fusion gates.
arXiv Detail & Related papers (2024-06-24T14:44:23Z) - Hybrid quantum transfer learning for crack image classification on NISQ
hardware [62.997667081978825]
We present an application of quantum transfer learning for detecting cracks in gray value images.
We compare the performance and training time of PennyLane's standard qubits with IBM's qasm_simulator and real backends.
arXiv Detail & Related papers (2023-07-31T14:45:29Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Experimental realization of deterministic and selective photon addition
in a bosonic mode assisted by an ancillary qubit [50.591267188664666]
Bosonic quantum error correcting codes are primarily designed to protect against single-photon loss.
Error correction requires a recovery operation that maps the error states -- which have opposite parity -- back onto the code states.
Here, we realize a collection of photon-number-selective, simultaneous photon addition operations on a bosonic mode.
arXiv Detail & Related papers (2022-12-22T23:32:21Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - Scalable multiphoton quantum metrology with neither pre- nor
post-selected measurements [0.0]
We experimentally demonstrate a scalable protocol for quantum-enhanced optical phase estimation.
The robustness of two-mode squeezed vacuum states against loss allows us to outperform schemes based on N00N states.
Our work is important for quantum technologies that rely on multiphoton interference.
arXiv Detail & Related papers (2020-11-04T18:11:33Z) - Error protected qubits in a silicon photonic chip [0.6815987996019325]
General purpose quantum computers can entangle a number of noisy physical qubits to realise composite qubits protected against errors.
Architectures for measurement-based quantum computing intrinsically support error-protected qubits.
We show an integrated silicon photonic architecture that both entangles multiple photons, and encodes multiple physical qubits on individual photons, to produce error-protected qubits.
arXiv Detail & Related papers (2020-09-17T14:37:12Z) - Deterministic correction of qubit loss [48.43720700248091]
Loss of qubits poses one of the fundamental obstacles towards large-scale and fault-tolerant quantum information processors.
We experimentally demonstrate the implementation of a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code.
arXiv Detail & Related papers (2020-02-21T19:48:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.