論文の概要: A Taylor Based Sampling Scheme for Machine Learning in Computational
Physics
- arxiv url: http://arxiv.org/abs/2101.11105v2
- Date: Thu, 28 Jan 2021 12:48:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-22 01:15:58.252960
- Title: A Taylor Based Sampling Scheme for Machine Learning in Computational
Physics
- Title(参考訳): 計算物理学における機械学習のためのtaylorに基づくサンプリングスキーム
- Authors: Paul Novello (CEA, Inria, X), Ga\"el Po\"ette (CEA), David Lugato
(CEA), Pietro Congedo (Inria, X)
- Abstract要約: 数値シミュレーションプログラムを用いてデータを生成する能力を利用して機械学習モデルをより良く訓練する。
通常の微分方程式(ODE)システムの解を学習する際のディープニューラルネットワーク(DNN)の誤差を低減するために、テイラー近似に基づく新しいデータサンプリングスキームを考案した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine Learning (ML) is increasingly used to construct surrogate models for
physical simulations. We take advantage of the ability to generate data using
numerical simulations programs to train ML models better and achieve accuracy
gain with no performance cost. We elaborate a new data sampling scheme based on
Taylor approximation to reduce the error of a Deep Neural Network (DNN) when
learning the solution of an ordinary differential equations (ODE) system.
- Abstract(参考訳): 機械学習(ML)は、物理シミュレーションのための代理モデルを構築するためにますます使われる。
数値シミュレーションプログラムによるデータ生成の利点を生かして,機械学習モデルのトレーニングを効率化し,性能コストを伴わずに精度向上を実現する。
本稿では,通常の微分方程式(ODE)システムの解を学習する際のディープニューラルネットワーク(DNN)の誤差を低減するために,テイラー近似に基づく新しいデータサンプリング手法について述べる。
関連論文リスト
- Learning Density Functionals from Noisy Quantum Data [0.0]
ノイズの多い中間スケール量子(NISQ)デバイスは、機械学習(ML)モデルのトレーニングデータを生成するために使用される。
NISQアルゴリズムの典型的なノイズを受ける小さなデータセットからニューラルネットワークMLモデルをうまく一般化できることを示す。
本研究は,NISQデバイスを実用量子シミュレーションに活用するための有望な経路であることを示唆する。
論文 参考訳(メタデータ) (2024-09-04T17:59:55Z) - Addressing Data Scarcity in Optical Matrix Multiplier Modeling Using
Transfer Learning [0.0]
本稿では,データ不足に対処するためにトランスファーラーニング(transfer learning)を用いて実験的検討を行った。
提案手法では,より精度の低い解析モデルから生成された合成データを用いて,モデルの事前学習を行う。
3x3フォトニックチップで実装された行列重みに対する1dBのルート平均二乗誤差を、利用可能なデータの25%だけを用いて達成する。
論文 参考訳(メタデータ) (2023-08-10T07:33:00Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
完全深層学習に基づくサロゲートモデルとして,LAMP(Learning Controllable Adaptive Simulation for Multi- resolution Physics)を導入した。
LAMPは、前方進化を学習するためのグラフニューラルネットワーク(GNN)と、空間的洗練と粗大化のポリシーを学ぶためのGNNベースのアクター批判で構成されている。
我々は,LAMPが最先端のディープラーニングサロゲートモデルより優れており,長期予測誤差を改善するために,適応的なトレードオフ計算が可能であることを実証した。
論文 参考訳(メタデータ) (2023-05-01T23:20:27Z) - Data efficient surrogate modeling for engineering design: Ensemble-free
batch mode deep active learning for regression [0.6021787236982659]
そこで本研究では,学生と教師の共用で,サロゲートモデルを学習するための,シンプルでスケーラブルな学習手法を提案する。
提案手法を用いることで,DBALやモンテカルロサンプリングのような他のベースラインと同レベルのサロゲート精度が得られる。
論文 参考訳(メタデータ) (2022-11-16T02:31:57Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
今後のエクサスケール時代は 次世代の物理シミュレーションを 高解像度で提供します
これらのシミュレーションは高解像度であり、ディスク上に大量のシミュレーションデータを格納することはほぼ不可能であるため、機械学習モデルのトレーニングに影響を与える。
この研究は、ディスク上のデータなしで、実行中のシミュレーションにニューラルネットワークを同時にトレーニングするアプローチを示す。
論文 参考訳(メタデータ) (2022-11-09T09:55:14Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
リソグラフィーモデリングは、チップ設計マスクが製造可能であることを保証するため、チップ設計において重要な問題である。
機械学習の最近の進歩は、時間を要するリソグラフィーシミュレーションをディープニューラルネットワークに置き換えるための代替ソリューションを提供している。
本稿では,限られたデータのジレンマを解消し,機械学習モデルの性能を向上させるために,データ拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-27T20:53:39Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
我々は,動的・シミュレータモデルと実ロボット間の残差を学習する。
学習した残差誤差により、動的モデル、シミュレーション、および実際のハードウェア間の現実的ギャップをさらに埋めることができることを示す。
論文 参考訳(メタデータ) (2022-09-07T15:15:12Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Exponentially improved detection and correction of errors in
experimental systems using neural networks [0.0]
実験装置の実証モデルを作成するために,2つの機械学習アルゴリズムを導入する。
これにより、一般化最適化タスクに必要な測定回数を指数関数的に削減することができる。
イオントラップ内の成層電場の検出と補償を例に,両アルゴリズムを実証する。
論文 参考訳(メタデータ) (2020-05-18T22:42:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。