論文の概要: Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components
- arxiv url: http://arxiv.org/abs/2102.07819v1
- Date: Mon, 15 Feb 2021 19:56:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-18 08:42:49.231493
- Title: Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components
- Title(参考訳): データ同化を用いた機械学習と知識ベースコンポーネントを組み合わせたハイブリッド予測システムの学習
- Authors: Alexander Wikner, Jaideep Pathak, Brian R. Hunt, Istvan Szunyogh,
Michelle Girvan, and Edward Ott
- Abstract要約: 利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
- 参考スコア(独自算出の注目度): 52.77024349608834
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of data-assisted forecasting of chaotic dynamical
systems when the available data is in the form of noisy partial measurements of
the past and present state of the dynamical system. Recently there have been
several promising data-driven approaches to forecasting of chaotic dynamical
systems using machine learning. Particularly promising among these are hybrid
approaches that combine machine learning with a knowledge-based model, where a
machine-learning technique is used to correct the imperfections in the
knowledge-based model. Such imperfections may be due to incomplete
understanding and/or limited resolution of the physical processes in the
underlying dynamical system, e.g., the atmosphere or the ocean. Previously
proposed data-driven forecasting approaches tend to require, for training,
measurements of all the variables that are intended to be forecast. We describe
a way to relax this assumption by combining data assimilation with machine
learning. We demonstrate this technique using the Ensemble Transform Kalman
Filter (ETKF) to assimilate synthetic data for the 3-variable Lorenz system and
for the Kuramoto-Sivashinsky system, simulating model error in each case by a
misspecified parameter value. We show that by using partial measurements of the
state of the dynamical system, we can train a machine learning model to improve
predictions made by an imperfect knowledge-based model.
- Abstract(参考訳): 本研究では,カオス力学系の過去と現在の状態の雑音部分的な測定の形で利用可能なデータが存在する場合,カオス力学系のデータ支援予測の問題を検討する。
近年、機械学習を用いたカオスダイナミクスシステムの予測に関するデータ駆動型アプローチがいくつかある。
特に有望なのは、機械学習と知識ベースのモデルを組み合わせたハイブリッドアプローチである。
このような不完全さは、基礎となるダイナミクスシステム(例えば大気や海)における物理プロセスの不完全な理解と/または限られた解決による可能性がある。
従来提案されたデータ駆動予測アプローチでは、トレーニングには、予測を意図したすべての変数の測定が必要となる傾向があった。
機械学習とデータ同化を組み合わせることで、この仮定を緩和する方法を説明します。
本手法は, エンサンブル変換カルマンフィルタ (ETKF) を用いて, 3変数ロレンツ系と倉本-シヴァシンスキー系の合成データを同化し, モデル誤差を不特定パラメータ値でシミュレーションしたものである。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
関連論文リスト
- Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Learning continuous models for continuous physics [94.42705784823997]
本研究では,科学技術応用のための機械学習モデルを検証する数値解析理論に基づくテストを開発する。
本研究は,従来のMLトレーニング/テスト手法と一体化して,科学・工学分野におけるモデルの検証を行う方法である。
論文 参考訳(メタデータ) (2022-02-17T07:56:46Z) - Using scientific machine learning for experimental bifurcation analysis
of dynamic systems [2.204918347869259]
本研究は、極限サイクルを持つ物理非線形力学系に対する普遍微分方程式(UDE)モデルの訓練に焦点をあてる。
数値シミュレーションによりトレーニングデータを生成する例を考察するとともに,提案するモデリング概念を物理実験に適用する。
ニューラルネットワークとガウス過程の両方を、力学モデルと共に普遍近似器として使用し、UDEモデリングアプローチの正確性と堅牢性を批判的に評価する。
論文 参考訳(メタデータ) (2021-10-22T15:43:03Z) - A Meta-learning Approach to Reservoir Computing: Time Series Prediction
with Limited Data [0.0]
本研究では,実験プロセスから適切なモデル構造を自動的に抽出するデータ駆動型手法を提案する。
簡単なベンチマーク問題に対して,我々のアプローチを実証する。
論文 参考訳(メタデータ) (2021-10-07T18:23:14Z) - Learning Dynamics from Noisy Measurements using Deep Learning with a
Runge-Kutta Constraint [9.36739413306697]
そこで本研究では,雑音と疎サンプルを用いた微分方程式の学習手法について論じる。
我々の方法論では、ディープニューラルネットワークと古典的な数値積分法の統合において、大きな革新が見られる。
論文 参考訳(メタデータ) (2021-09-23T15:43:45Z) - A Framework for Machine Learning of Model Error in Dynamical Systems [7.384376731453594]
データから動的システムを特定するために,機械的アプローチと機械学習アプローチを混在させる統一フレームワークを提案する。
モデルエラーがメモリレスであり、大きなメモリを持つ問題に対して、連続時間と離散時間の両方で問題を提起した。
ハイブリッド手法は、データ飢餓、モデルの複雑さの要求、全体的な予測性能において、データ駆動アプローチよりも大幅に優れています。
論文 参考訳(メタデータ) (2021-07-14T12:47:48Z) - Bridging the Gap: Machine Learning to Resolve Improperly Modeled
Dynamics [4.940323406667406]
本稿では,複雑な時間的挙動を示すシステムに対して,不適切にモデル化された力学を克服するためのデータ駆動型モデリング戦略を提案する。
本稿では,システムの真の力学と,不正確あるいは不適切に記述されたシステムのモデルによって与えられる力学の相違を解決するためのディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2020-08-23T04:57:02Z) - Combining Machine Learning with Knowledge-Based Modeling for Scalable
Forecasting and Subgrid-Scale Closure of Large, Complex, Spatiotemporal
Systems [48.7576911714538]
我々は、過去のデータを予測に組み込む上で、機械学習を必須のツールとして活用しようと試みる。
i)並列機械学習予測手法と(ii)ハイブリッド手法の2つの手法を組み合わせて,知識ベースコンポーネントと機械学習ベースコンポーネントからなる複合予測システムを提案する。
i) と (ii) を組み合わせることで、非常に大規模なシステムに優れた性能を与えることができるだけでなく、並列機械学習コンポーネントを訓練するのに必要となる時系列データの長さが、並列化なしで必要なものよりも劇的に少ないことを実証した。
論文 参考訳(メタデータ) (2020-02-10T23:21:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。