Boosting Segmentation Performance across datasets using histogram
specification with application to pelvic bone segmentation
- URL: http://arxiv.org/abs/2101.11135v1
- Date: Tue, 26 Jan 2021 23:48:40 GMT
- Title: Boosting Segmentation Performance across datasets using histogram
specification with application to pelvic bone segmentation
- Authors: Prabhakara Subramanya Jois, Aniketh Manjunath and Thomas Fevens
- Abstract summary: We propose a methodology based on modulation of image tonal distributions and deep learning to boost the performance of networks trained on limited data.
The segmentation task uses a U-Net configuration with an EfficientNet-B0 backbone, optimized using an augmented BCE-IoU loss function.
- Score: 1.3750624267664155
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate segmentation of the pelvic CTs is crucial for the clinical diagnosis
of pelvic bone diseases and for planning patient-specific hip surgeries. With
the emergence and advancements of deep learning for digital healthcare, several
methodologies have been proposed for such segmentation tasks. But in a low data
scenario, the lack of abundant data needed to train a Deep Neural Network is a
significant bottle-neck. In this work, we propose a methodology based on
modulation of image tonal distributions and deep learning to boost the
performance of networks trained on limited data. The strategy involves
pre-processing of test data through histogram specification. This simple yet
effective approach can be viewed as a style transfer methodology. The
segmentation task uses a U-Net configuration with an EfficientNet-B0 backbone,
optimized using an augmented BCE-IoU loss function. This configuration is
validated on a total of 284 images taken from two publicly available CT
datasets, TCIA (a cancer imaging archive) and the Visible Human Project. The
average performance measures for the Dice coefficient and Intersection over
Union are 95.7% and 91.9%, respectively, give strong evidence for the
effectiveness of the approach, which is highly competitive with
state-of-the-art methodologies.
Related papers
- Simple 2D Convolutional Neural Network-based Approach for COVID-19 Detection [8.215897530386343]
This study explores the use of deep learning techniques for analyzing lung Computed Tomography (CT) images.
We propose an advanced Spatial-Slice Feature Learning (SSFL++) framework specifically tailored for CT scans.
It aims to filter out out out-of-distribution (OOD) data within the entire CT scan, allowing us to select essential spatial-slice features for analysis by reducing data redundancy by 70%.
arXiv Detail & Related papers (2024-03-17T14:34:51Z) - Label-efficient Multi-organ Segmentation Method with Diffusion Model [6.413416851085592]
We present a label-efficient learning approach using a pre-trained diffusion model for multi-organ segmentation tasks in CT images.
Our method achieves competitive multi-organ segmentation performance compared to state-of-the-art methods on the FLARE 2022 dataset.
arXiv Detail & Related papers (2024-02-23T09:25:57Z) - Augmentation is AUtO-Net: Augmentation-Driven Contrastive Multiview
Learning for Medical Image Segmentation [3.1002416427168304]
This thesis focuses on retinal blood vessel segmentation tasks.
It provides an extensive literature review of deep learning-based medical image segmentation approaches.
It proposes a novel efficient, simple multiview learning framework.
arXiv Detail & Related papers (2023-11-02T06:31:08Z) - ARHNet: Adaptive Region Harmonization for Lesion-aware Augmentation to
Improve Segmentation Performance [61.04246102067351]
We propose a foreground harmonization framework (ARHNet) to tackle intensity disparities and make synthetic images look more realistic.
We demonstrate the efficacy of our method in improving the segmentation performance using real and synthetic images.
arXiv Detail & Related papers (2023-07-02T10:39:29Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - Cut-Paste Consistency Learning for Semi-Supervised Lesion Segmentation [0.20305676256390934]
Semi-supervised learning has the potential to improve the data-efficiency of training data-hungry deep neural networks.
We present a simple semi-supervised learning method for lesion segmentation tasks based on the ideas of cut-paste augmentation and consistency regularization.
arXiv Detail & Related papers (2022-10-01T04:43:54Z) - Learning Fuzzy Clustering for SPECT/CT Segmentation via Convolutional
Neural Networks [5.3123694982708365]
Quantitative bone single-photon emission computed tomography (QBSPECT) has the potential to provide a better quantitative assessment of bone metastasis than planar bone scintigraphy.
The segmentation of anatomical regions-of-interests (ROIs) still relies heavily on the manual delineation by experts.
This work proposes a fast and robust automated segmentation method for partitioning a QBSPECT image into lesion, bone, and background.
arXiv Detail & Related papers (2021-04-17T19:03:52Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z) - Automatic Data Augmentation via Deep Reinforcement Learning for
Effective Kidney Tumor Segmentation [57.78765460295249]
We develop a novel automatic learning-based data augmentation method for medical image segmentation.
In our method, we innovatively combine the data augmentation module and the subsequent segmentation module in an end-to-end training manner with a consistent loss.
We extensively evaluated our method on CT kidney tumor segmentation which validated the promising results of our method.
arXiv Detail & Related papers (2020-02-22T14:10:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.