論文の概要: Accuracy and Privacy Evaluations of Collaborative Data Analysis
- arxiv url: http://arxiv.org/abs/2101.11144v1
- Date: Wed, 27 Jan 2021 00:38:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-13 19:42:25.513834
- Title: Accuracy and Privacy Evaluations of Collaborative Data Analysis
- Title(参考訳): 協調データ分析の正確性とプライバシー評価
- Authors: Akira Imakura, Anna Bogdanova, Takaya Yamazoe, Kazumasa Omote, Tetsuya
Sakurai
- Abstract要約: 非モデル共有型フェデレーション学習として,次元性低減データ表現の共有による協調的データ分析が提案されている。
本稿では,本フレームワークの精度とプライバシ評価について分析する。
- 参考スコア(独自算出の注目度): 4.987315310656657
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distributed data analysis without revealing the individual data has recently
attracted significant attention in several applications. A collaborative data
analysis through sharing dimensionality reduced representations of data has
been proposed as a non-model sharing-type federated learning. This paper
analyzes the accuracy and privacy evaluations of this novel framework. In the
accuracy analysis, we provided sufficient conditions for the equivalence of the
collaborative data analysis and the centralized analysis with dimensionality
reduction. In the privacy analysis, we proved that collaborative users' private
datasets are protected with a double privacy layer against insider and external
attacking scenarios.
- Abstract(参考訳): 個々のデータを明らかにしない分散データ分析は、最近いくつかのアプリケーションで大きな注目を集めています。
非モデル共有型フェデレーション学習として,次元性低減データ表現の共有による協調的データ分析が提案されている。
本稿では,本フレームワークの精度とプライバシ評価について分析する。
精度解析では、協調データ解析と寸法低減による集中分析の等価性について十分な条件を提供しました。
プライバシー分析では、共同ユーザーのプライベートデータセットがインサイダーおよび外部攻撃シナリオに対して二重のプライバシー層で保護されることを証明しました。
関連論文リスト
- DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
連合学習は、生データをリークすることなく、複数の組織のデータを使用してグローバルモデルをトレーニングするための有望なアプローチとして登場した。
上記の2つの課題を同時に解決するための一般的な枠組みを提案する。
我々は、ロバストネス解析、収束解析、一般化能力を含む包括的理論的解析を提供する。
論文 参考訳(メタデータ) (2022-04-16T08:08:29Z) - Data-SUITE: Data-centric identification of in-distribution incongruous
examples [81.21462458089142]
Data-SUITEは、ID(In-distriion)データの不連続領域を特定するためのデータ中心のフレームワークである。
我々は,Data-SUITEの性能保証とカバレッジ保証を実証的に検証する。
論文 参考訳(メタデータ) (2022-02-17T18:58:31Z) - Efficient Logistic Regression with Local Differential Privacy [0.0]
モノのインターネット(Internet of Things)デバイスは急速に拡大し、大量のデータを生み出している。
これらのデバイスから収集されたデータを探索する必要性が高まっている。
コラボレーション学習は、モノのインターネット(Internet of Things)設定に戦略的ソリューションを提供すると同時に、データのプライバシに関する一般の懸念も引き起こす。
論文 参考訳(メタデータ) (2022-02-05T22:44:03Z) - Linear Model with Local Differential Privacy [0.225596179391365]
プライバシ保護技術は、さまざまな機関間で分散データを解析するために広く研究されている。
セキュアなマルチパーティ計算は、プライバシ保護のために、高いプライバシレベルで、高コストで広く研究されている。
マトリクスマスキング技術は、悪意のある敵に対するセキュアなスキームを暗号化するために用いられる。
論文 参考訳(メタデータ) (2022-02-05T01:18:00Z) - Post-processing of Differentially Private Data: A Fairness Perspective [53.29035917495491]
本稿では,ポストプロセッシングが個人やグループに異なる影響を与えることを示す。
差分的にプライベートなデータセットのリリースと、ダウンストリームの決定にそのようなプライベートなデータセットを使用するという、2つの重要な設定を分析している。
それは、異なる公正度尺度の下で(ほぼ)最適である新しい後処理機構を提案する。
論文 参考訳(メタデータ) (2022-01-24T02:45:03Z) - Adaptive Data Analysis with Correlated Observations [21.969356766737622]
いくつかのケースでは、サンプル内に依存関係がある場合でも、差分プライバシーが保証されることが示されています。
転写圧縮と適応データ解析の関連性は,非ID設定にまで拡張可能であることを示す。
論文 参考訳(メタデータ) (2022-01-21T14:00:30Z) - Combining Public and Private Data [7.975795748574989]
分散を最小化するために最適化された平均の混合推定器を導入する。
ユーザのプライバシニーズに比例してデータをサブサンプリングすることで、個人のプライバシを保護する手法よりも、当社のメカニズムの方が望ましい、と我々は主張する。
論文 参考訳(メタデータ) (2021-10-29T23:25:49Z) - Private measurement of nonlinear correlations between data hosted across
multiple parties [14.93584434176082]
2つのエンティティにまたがる機密データ間の非線形相関を計測する微分プライベート手法を提案する。
この研究は、プライベートフィーチャースクリーニング、プライベートインデペンデントテスト、プライベートkサンプルテスト、プライベートマルチパーティ因果推論、プライベートデータ合成に直接適用することができる。
論文 参考訳(メタデータ) (2021-10-19T00:31:26Z) - Partial sensitivity analysis in differential privacy [58.730520380312676]
それぞれの入力特徴が個人のプライバシ損失に与える影響について検討する。
プライベートデータベース上でのクエリに対する我々のアプローチを実験的に評価する。
また、合成データにおけるニューラルネットワークトレーニングの文脈における知見についても検討する。
論文 参考訳(メタデータ) (2021-09-22T08:29:16Z) - Sensitivity analysis in differentially private machine learning using
hybrid automatic differentiation [54.88777449903538]
感性分析のための新しいテクスチブリド自動識別システム(AD)を導入する。
これにより、ニューラルネットワークをプライベートデータ上でトレーニングするなど、任意の微分可能な関数合成の感度をモデル化できる。
当社のアプローチは,データ処理の設定において,プライバシ損失に関する原則的推論を可能にする。
論文 参考訳(メタデータ) (2021-07-09T07:19:23Z) - Robustness Threats of Differential Privacy [70.818129585404]
我々は、いくつかの設定で差分プライバシーをトレーニングしたネットワークが、非プライベートバージョンに比べてさらに脆弱であることを実験的に実証した。
本研究では,勾配クリッピングや雑音付加などのニューラルネットワークトレーニングの主成分が,モデルの堅牢性に与える影響について検討する。
論文 参考訳(メタデータ) (2020-12-14T18:59:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。