論文の概要: A Unified View of Differentially Private Deep Generative Modeling
- arxiv url: http://arxiv.org/abs/2309.15696v1
- Date: Wed, 27 Sep 2023 14:38:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-28 13:25:49.531158
- Title: A Unified View of Differentially Private Deep Generative Modeling
- Title(参考訳): 微分プライベート深部生成モデリングの統一的視点
- Authors: Dingfan Chen, Raouf Kerkouche, Mario Fritz
- Abstract要約: プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
- 参考スコア(独自算出の注目度): 60.72161965018005
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The availability of rich and vast data sources has greatly advanced machine
learning applications in various domains. However, data with privacy concerns
comes with stringent regulations that frequently prohibited data access and
data sharing. Overcoming these obstacles in compliance with privacy
considerations is key for technological progress in many real-world application
scenarios that involve privacy sensitive data. Differentially private (DP) data
publishing provides a compelling solution, where only a sanitized form of the
data is publicly released, enabling privacy-preserving downstream analysis and
reproducible research in sensitive domains. In recent years, various approaches
have been proposed for achieving privacy-preserving high-dimensional data
generation by private training on top of deep neural networks. In this paper,
we present a novel unified view that systematizes these approaches. Our view
provides a joint design space for systematically deriving methods that cater to
different use cases. We then discuss the strengths, limitations, and inherent
correlations between different approaches, aiming to shed light on crucial
aspects and inspire future research. We conclude by presenting potential paths
forward for the field of DP data generation, with the aim of steering the
community toward making the next important steps in advancing
privacy-preserving learning.
- Abstract(参考訳): リッチで巨大なデータソースの可用性は、さまざまなドメインの機械学習アプリケーションを大きく進歩させた。
しかし、プライバシーに関するデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
プライバシー配慮によるこれらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみが公開され、プライバシー保護の下流分析と機密ドメインでの再現可能な研究を可能にする、魅力的なソリューションを提供する。
近年,ディープニューラルネットワーク上でのプライベートトレーニングによるプライバシ保存型高次元データ生成を実現するための様々なアプローチが提案されている。
本稿では,これらのアプローチを体系化する新しい統一的視点を提案する。
我々は,異なるユースケースに対応する手法を体系的に導出するための共同設計空間を提供する。
次に、異なるアプローチ間の強み、制限、および固有の相関を議論し、重要な側面に光を当て、将来の研究を刺激することを目的とした。
最後に,プライバシ保護学習の次の重要なステップを進めるために,コミュニティを指導することを目的として,dpデータ生成の分野に向けた潜在的な道筋を提示する。
関連論文リスト
- Tabular Data Synthesis with Differential Privacy: A Survey [24.500349285858597]
データ共有はコラボレーティブなイノベーションの前提条件であり、さまざまなデータセットを活用して深い洞察を得ることを可能にします。
データ合成は、実際のデータの統計特性を保存する人工データセットを生成することで、この問題に対処する。
プライバシーに配慮したデータ共有に対する、有望なアプローチとして、異なるプライベートなデータ合成が登場している。
論文 参考訳(メタデータ) (2024-11-04T06:32:48Z) - Masked Differential Privacy [64.32494202656801]
本稿では,差分プライバシーを適用した機密領域を制御できる「マスク型差分プライバシー(DP)」という効果的なアプローチを提案する。
提案手法はデータに基づいて選択的に動作し,DPアプリケーションや差分プライバシーをデータサンプル内の他のプライバシー技術と組み合わせることなく,非感性時間領域を定義できる。
論文 参考訳(メタデータ) (2024-10-22T15:22:53Z) - Preserving Privacy in Large Language Models: A Survey on Current Threats and Solutions [12.451936012379319]
大規模言語モデル(LLM)は、人工知能の大幅な進歩を表し、様々な領域にまたがる応用を見つける。
トレーニングのための大規模なインターネットソースデータセットへの依存は、注目すべきプライバシー問題を引き起こす。
特定のアプリケーション固有のシナリオでは、これらのモデルをプライベートデータで微調整する必要があります。
論文 参考訳(メタデータ) (2024-08-10T05:41:19Z) - Privacy-preserving datasets by capturing feature distributions with Conditional VAEs [0.11999555634662634]
条件付き変分オートエンコーダ(CVAE)は、大きな事前学習された視覚基盤モデルから抽出された特徴ベクトルに基づいて訓練される。
本手法は, 医用領域と自然画像領域の両方において, 従来のアプローチよりも優れている。
結果は、データスカースおよびプライバシに敏感な環境におけるディープラーニングアプリケーションに大きな影響を与える生成モデルの可能性を強調している。
論文 参考訳(メタデータ) (2024-08-01T15:26:24Z) - Federated Transfer Learning with Differential Privacy [21.50525027559563]
我々は、信頼された中央サーバを仮定することなく、各データセットに対するプライバシー保証を提供する、テキストフェデレーションによる差分プライバシーの概念を定式化する。
フェデレートされた差分プライバシは、確立されたローカルと中央の差分プライバシモデルの間の中間プライバシモデルであることを示す。
論文 参考訳(メタデータ) (2024-03-17T21:04:48Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
コンテキストプライバシ保護言語モデル(PrivacyMind)を紹介する。
我々の研究はモデル設計に関する理論的分析を提供し、様々な手法をベンチマークする。
特に、肯定的な例と否定的な例の両方による命令チューニングは、有望な方法である。
論文 参考訳(メタデータ) (2023-10-03T22:37:01Z) - Recent Advances of Differential Privacy in Centralized Deep Learning: A
Systematic Survey [1.89915151018241]
微分プライバシーは、機械学習におけるデータ保護の一般的な方法となっている。
このサーベイは、微分的にプライベートな集中型ディープラーニングの最先端技術の概要を提供する。
論文 参考訳(メタデータ) (2023-09-28T12:44:59Z) - Privacy-Preserving Graph Machine Learning from Data to Computation: A
Survey [67.7834898542701]
我々は,グラフ機械学習のプライバシ保護手法の見直しに重点を置いている。
まずプライバシ保護グラフデータを生成する方法を検討する。
次に,プライバシ保護情報を送信する方法について述べる。
論文 参考訳(メタデータ) (2023-07-10T04:30:23Z) - Private Set Generation with Discriminative Information [63.851085173614]
異なるプライベートなデータ生成は、データプライバシの課題に対する有望な解決策である。
既存のプライベートな生成モデルは、合成サンプルの有用性に苦慮している。
我々は,最先端アプローチのサンプルユーティリティを大幅に改善する,シンプルで効果的な手法を提案する。
論文 参考訳(メタデータ) (2022-11-07T10:02:55Z) - GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially
Private Generators [74.16405337436213]
我々は、GS-WGAN(Gradient-sanitized Wasserstein Generative Adrial Networks)を提案する。
GS-WGANは、厳格なプライバシー保証を備えた機密データの衛生的な形式での公開を可能にする。
このアプローチは、複数のメトリクスにわたる最先端のアプローチよりも一貫して優れています。
論文 参考訳(メタデータ) (2020-06-15T10:01:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。