Graph Neural Network for Traffic Forecasting: A Survey
- URL: http://arxiv.org/abs/2101.11174v1
- Date: Wed, 27 Jan 2021 02:35:41 GMT
- Title: Graph Neural Network for Traffic Forecasting: A Survey
- Authors: Weiwei Jiang, Jiayun Luo
- Abstract summary: This paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems.
We present a collection of open data and source resources for each problem, as well as future research directions.
We have also created a public Github repository to update the latest papers, open data and source resources.
- Score: 1.1977931648859175
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traffic forecasting is an important factor for the success of intelligent
transportation systems. Deep learning models including convolution neural
networks and recurrent neural networks have been applied in traffic forecasting
problems to model the spatial and temporal dependencies. In recent years, to
model the graph structures in the transportation systems as well as the
contextual information, graph neural networks (GNNs) are introduced as new
tools and have achieved the state-of-the-art performance in a series of traffic
forecasting problems. In this survey, we review the rapidly growing body of
recent research using different GNNs, e.g., graph convolutional and graph
attention networks, in various traffic forecasting problems, e.g., road traffic
flow and speed forecasting, passenger flow forecasting in urban rail transit
systems, demand forecasting in ride-hailing platforms, etc. We also present a
collection of open data and source resources for each problem, as well as
future research directions. To the best of our knowledge, this paper is the
first comprehensive survey that explores the application of graph neural
networks for traffic forecasting problems. We have also created a public Github
repository to update the latest papers, open data and source resources.
Related papers
- Graph Pruning Based Spatial and Temporal Graph Convolutional Network with Transfer Learning for Traffic Prediction [0.0]
This study proposes a novel Spatial-temporal Convolutional Network (TL-GPSTGN) based on graph pruning and transfer learning framework.
The results demonstrate the exceptional predictive accuracy of TL-GPSTGN on a single dataset, as well as its robust migration performance across different datasets.
arXiv Detail & Related papers (2024-09-25T00:59:23Z) - A Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection [98.41798478488101]
Time series analytics is crucial to unlocking the wealth of information implicit in available data.
Recent advancements in graph neural networks (GNNs) have led to a surge in GNN-based approaches for time series analysis.
This survey brings together a vast array of knowledge on GNN-based time series research, highlighting foundations, practical applications, and opportunities of graph neural networks for time series analysis.
arXiv Detail & Related papers (2023-07-07T08:05:03Z) - STG4Traffic: A Survey and Benchmark of Spatial-Temporal Graph Neural Networks for Traffic Prediction [9.467593700532401]
This paper provides a systematic review of graph learning strategies and commonly used graph convolution algorithms.
We then conduct a comprehensive analysis of the strengths and weaknesses of recently proposed spatial-temporal graph network models.
We build a study called STG4Traffic using the deep learning framework PyTorch to establish a standardized and scalable benchmark on two types of traffic datasets.
arXiv Detail & Related papers (2023-07-02T06:56:52Z) - Graph-level Neural Networks: Current Progress and Future Directions [61.08696673768116]
Graph-level Neural Networks (GLNNs, deep learning-based graph-level learning methods) have been attractive due to their superiority in modeling high-dimensional data.
We propose a systematic taxonomy covering GLNNs upon deep neural networks, graph neural networks, and graph pooling.
arXiv Detail & Related papers (2022-05-31T06:16:55Z) - LHNN: Lattice Hypergraph Neural Network for VLSI Congestion Prediction [70.31656245793302]
lattice hypergraph (LH-graph) is a novel graph formulation for circuits.
LHNN constantly achieves more than 35% improvements compared with U-nets and Pix2Pix on the F1 score.
arXiv Detail & Related papers (2022-03-24T03:31:18Z) - Few-Shot Traffic Prediction with Graph Networks using Locale as
Relational Inductive Biases [7.173242326298134]
In many cities, the available amount of traffic data is substantially below the minimum requirement due to the data collection expense.
This paper develops a graph network (GN)-based deep learning model LocaleGn that depicts the traffic dynamics using localized data.
It is also demonstrated that the learned knowledge from LocaleGn can be transferred across cities.
arXiv Detail & Related papers (2022-03-08T09:46:50Z) - Graph Neural Networks for Traffic Forecasting [0.0]
We focus on the challenge of traffic forecasting and review the recent development and application of graph neural networks (GNNs) to this problem.
GNNs are a class of deep learning methods that directly process the input as graph data.
This leverages more directly the spatial dependencies of traffic data and makes use of the advantages of deep learning producing state-of-the-art results.
arXiv Detail & Related papers (2021-04-27T10:39:00Z) - Overcoming Catastrophic Forgetting in Graph Neural Networks [50.900153089330175]
Catastrophic forgetting refers to the tendency that a neural network "forgets" the previous learned knowledge upon learning new tasks.
We propose a novel scheme dedicated to overcoming this problem and hence strengthen continual learning in graph neural networks (GNNs)
At the heart of our approach is a generic module, termed as topology-aware weight preserving(TWP)
arXiv Detail & Related papers (2020-12-10T22:30:25Z) - Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph
Link Prediction [69.1473775184952]
We introduce a realistic problem of few-shot out-of-graph link prediction.
We tackle this problem with a novel transductive meta-learning framework.
We validate our model on multiple benchmark datasets for knowledge graph completion and drug-drug interaction prediction.
arXiv Detail & Related papers (2020-06-11T17:42:46Z) - Traffic Flow Forecast of Road Networks with Recurrent Neural Networks [0.0]
The forecast of traffic flow is indispensable for an efficient intelligent transportation system.
In our work, this prediction is performed with various recurrent neural networks.
Most often the vector output model with gated recurrent units achieved the smallest error on the test set.
arXiv Detail & Related papers (2020-06-08T15:17:58Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.