Traffic Flow Forecast of Road Networks with Recurrent Neural Networks
- URL: http://arxiv.org/abs/2006.04670v1
- Date: Mon, 8 Jun 2020 15:17:58 GMT
- Title: Traffic Flow Forecast of Road Networks with Recurrent Neural Networks
- Authors: Ralf R\"uther and Andreas Klos and Marius Rosenbaum and Wolfram
Schiffmann
- Abstract summary: The forecast of traffic flow is indispensable for an efficient intelligent transportation system.
In our work, this prediction is performed with various recurrent neural networks.
Most often the vector output model with gated recurrent units achieved the smallest error on the test set.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The interest in developing smart cities has increased dramatically in recent
years. In this context an intelligent transportation system depicts a major
topic. The forecast of traffic flow is indispensable for an efficient
intelligent transportation system. The traffic flow forecast is a difficult
task, due to its stochastic and non linear nature. Besides classical
statistical methods, neural networks are a promising possibility to predict
future traffic flow. In our work, this prediction is performed with various
recurrent neural networks. These are trained on measurements of induction
loops, which are placed in intersections of the city. We utilized data from
beginning of January to the end of July in 2018. Each model incorporates
sequences of the measured traffic flow from all sensors and predicts the future
traffic flow for each sensor simultaneously. A variety of model architectures,
forecast horizons and input data were investigated. Most often the vector
output model with gated recurrent units achieved the smallest error on the test
set over all considered prediction scenarios. Due to the small amount of data,
generalization of the trained models is limited.
Related papers
- Learning Traffic Anomalies from Generative Models on Real-Time Observations [49.1574468325115]
We use the Spatiotemporal Generative Adversarial Network (STGAN) framework to capture complex spatial and temporal dependencies in traffic data.
We apply STGAN to real-time, minute-by-minute observations from 42 traffic cameras across Gothenburg, Sweden, collected over several months in 2020.
Our results demonstrate that the model effectively detects traffic anomalies with high precision and low false positive rates.
arXiv Detail & Related papers (2025-02-03T14:23:23Z) - Multi-Source Urban Traffic Flow Forecasting with Drone and Loop Detector Data [61.9426776237409]
Drone-captured data can create an accurate multi-sensor mobility observatory for large-scale urban networks.
A simple yet effective graph-based model HiMSNet is proposed to integrate multiple data modalities and learn-temporal correlations.
arXiv Detail & Related papers (2025-01-07T03:23:28Z) - NetFlowGen: Leveraging Generative Pre-training for Network Traffic Dynamics [72.95483148058378]
We propose to pre-train a general-purpose machine learning model to capture traffic dynamics with only traffic data from NetFlow records.
We address challenges such as unifying network feature representations, learning from large unlabeled traffic data volume, and testing on real downstream tasks in DDoS attack detection.
arXiv Detail & Related papers (2024-12-30T00:47:49Z) - Distil the informative essence of loop detector data set: Is
network-level traffic forecasting hungry for more data? [0.8002196839441036]
We propose an uncertainty-aware traffic forecasting framework to explore how many samples of loop data are truly effective for training forecasting models.
The proposed methodology proves valuable in evaluating large traffic datasets' true information content.
arXiv Detail & Related papers (2023-10-31T11:23:10Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - TraffNet: Learning Causality of Traffic Generation for What-if Prediction [4.604622556490027]
Real-time what-if traffic prediction is crucial for decision making in intelligent traffic management and control.
Here, we present a simple deep learning framework called TraffNet that learns the mechanisms of traffic generation for what-if pre-diction.
arXiv Detail & Related papers (2023-03-28T13:12:17Z) - Few-Shot Traffic Prediction with Graph Networks using Locale as
Relational Inductive Biases [7.173242326298134]
In many cities, the available amount of traffic data is substantially below the minimum requirement due to the data collection expense.
This paper develops a graph network (GN)-based deep learning model LocaleGn that depicts the traffic dynamics using localized data.
It is also demonstrated that the learned knowledge from LocaleGn can be transferred across cities.
arXiv Detail & Related papers (2022-03-08T09:46:50Z) - Short-term traffic prediction using physics-aware neural networks [0.0]
We propose an algorithm performing short-term predictions of the flux of vehicles on a stretch of road.
The algorithm is based on a physics-aware recurrent neural network.
arXiv Detail & Related papers (2021-09-21T15:31:33Z) - Graph Neural Network for Traffic Forecasting: A Survey [1.1977931648859175]
This paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems.
We present a collection of open data and source resources for each problem, as well as future research directions.
We have also created a public Github repository to update the latest papers, open data and source resources.
arXiv Detail & Related papers (2021-01-27T02:35:41Z) - A Graph Convolutional Network with Signal Phasing Information for
Arterial Traffic Prediction [63.470149585093665]
arterial traffic prediction plays a crucial role in the development of modern intelligent transportation systems.
Many existing studies on arterial traffic prediction only consider temporal measurements of flow and occupancy from loop sensors and neglect the rich spatial relationships between upstream and downstream detectors.
We fill this gap by enhancing a deep learning approach, Diffusion Convolutional Recurrent Neural Network, with spatial information generated from signal timing plans at targeted intersections.
arXiv Detail & Related papers (2020-12-25T01:40:29Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) is a novel two-stage motion prediction framework.
TPNet first generates a candidate set of future trajectories as hypothesis proposals, then makes the final predictions by classifying and refining the proposals.
Experiments on four large-scale trajectory prediction datasets, show that TPNet achieves the state-of-the-art results both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-04-26T00:01:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.