Solar Radiation Anomaly Events Modeling Using Spatial-Temporal Mutually
Interactive Processes
- URL: http://arxiv.org/abs/2101.11179v1
- Date: Wed, 27 Jan 2021 03:02:39 GMT
- Title: Solar Radiation Anomaly Events Modeling Using Spatial-Temporal Mutually
Interactive Processes
- Authors: Minghe Zhang, Chen Xu, Andy Sun, Feng Qiu, Yao Xie
- Abstract summary: Solar ramping events are impacted by weather conditions such as temperature, humidity, and cloud density.
We propose a novel method to model and model solar radiation data based on spatial-temporal interactive Bernoulli process.
- Score: 11.119904876394399
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling and predicting solar events, in particular, the solar ramping event
is critical for improving situational awareness for solar power generation
systems. Solar ramping events are significantly impacted by weather conditions
such as temperature, humidity, and cloud density. Discovering the correlation
between different locations and times is a highly challenging task since the
system is complex and noisy. We propose a novel method to model and predict
ramping events from spatial-temporal sequential solar radiation data based on a
spatio-temporal interactive Bernoulli process. We demonstrate the good
performance of our approach on real solar radiation datasets.
Related papers
- MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Solarcast-ML: Per Node GraphCast Extension for Solar Energy Production [0.0]
This project presents an extension to the GraphCast model, a state-of-the-art graph neural network (GNN) for global weather forecasting, by integrating solar energy production forecasting capabilities.
The proposed approach leverages the weather forecasts generated by GraphCast and trains a neural network model to predict the ratio of actual solar output to potential solar output based on various weather conditions.
The results demonstrate the model's effectiveness in accurately predicting solar radiation, with its convergence behavior, decreasing training loss, and accurate prediction of solar radiation patterns.
arXiv Detail & Related papers (2024-06-19T13:47:05Z) - Comparing Data-Driven and Mechanistic Models for Predicting Phenology in
Deciduous Broadleaf Forests [47.285748922842444]
We train a deep neural network to predict a phenological index from meteorological time series.
We find that this approach outperforms traditional process-based models.
arXiv Detail & Related papers (2024-01-08T15:29:23Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
Solar power harbors immense potential in mitigating climate change by substantially reducing CO$_2$ emissions.
However, the inherent variability of solar irradiance poses a significant challenge for seamlessly integrating solar power into the electrical grid.
In this paper, we put forth a deep learning architecture designed to harnesstemporal context using satellite data.
arXiv Detail & Related papers (2023-06-01T19:54:39Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
This work investigates capabilities of current state-of-the-art generative models to accurately capture the data distribution behind observed solar activity states.
Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts.
arXiv Detail & Related papers (2023-04-14T14:40:32Z) - A Moment in the Sun: Solar Nowcasting from Multispectral Satellite Data
using Self-Supervised Learning [4.844946519309793]
We develop a general model for solar nowcasting from abundant and readily available multispectral satellite data using self-supervised learning.
Our model estimates a location's future solar irradiance based on satellite observations.
We evaluate our approach for different coverage areas and forecast horizons across 25 solar sites.
arXiv Detail & Related papers (2021-12-28T03:13:44Z) - Simultaneous Multivariate Forecast of Space Weather Indices using Deep
Neural Network Ensembles [3.3935755618642367]
Solar radio flux and geomagnetic indices are important indicators of solar activity and its effects.
We propose a model based on long short-term memory neural networks to learn the distribution of time series data.
We show a 30-40% improvement of the root mean-square error while including solar image data with time series data.
arXiv Detail & Related papers (2021-12-16T17:42:49Z) - Prediction of Solar Radiation Using Artificial Neural Network [0.0]
This paper presents an algorithm that can be used to predict an hourly activity of solar radiation.
The dataset consists of temperature of air, time, humidity, wind speed, atmospheric pressure, direction of wind and solar radiation data.
Two models are created to efficiently create a system capable of interpreting patterns through supervised learning data.
arXiv Detail & Related papers (2021-04-01T20:41:27Z) - DeepClimGAN: A High-Resolution Climate Data Generator [60.59639064716545]
Earth system models (ESMs) are often used to generate future projections of climate change scenarios.
As a compromise, emulators are substantially less expensive but may not have all of the complexity of an ESM.
Here we demonstrate the use of a conditional generative adversarial network (GAN) to act as an ESM emulator.
arXiv Detail & Related papers (2020-11-23T20:13:37Z) - Dynamical Landscape and Multistability of a Climate Model [64.467612647225]
We find a third intermediate stable state in one of the two climate models we consider.
The combination of our approaches allows to identify how the negative feedback of ocean heat transport and entropy production drastically change the topography of Earth's climate.
arXiv Detail & Related papers (2020-10-20T15:31:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.