Solarcast-ML: Per Node GraphCast Extension for Solar Energy Production
- URL: http://arxiv.org/abs/2406.13559v1
- Date: Wed, 19 Jun 2024 13:47:05 GMT
- Title: Solarcast-ML: Per Node GraphCast Extension for Solar Energy Production
- Authors: Cale Colony, Razan Andigani,
- Abstract summary: This project presents an extension to the GraphCast model, a state-of-the-art graph neural network (GNN) for global weather forecasting, by integrating solar energy production forecasting capabilities.
The proposed approach leverages the weather forecasts generated by GraphCast and trains a neural network model to predict the ratio of actual solar output to potential solar output based on various weather conditions.
The results demonstrate the model's effectiveness in accurately predicting solar radiation, with its convergence behavior, decreasing training loss, and accurate prediction of solar radiation patterns.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This project presents an extension to the GraphCast model, a state-of-the-art graph neural network (GNN) for global weather forecasting, by integrating solar energy production forecasting capabilities. The proposed approach leverages the weather forecasts generated by GraphCast and trains a neural network model to predict the ratio of actual solar output to potential solar output based on various weather conditions. The model architecture consists of an input layer corresponding to weather features (temperature, humidity, dew point, wind speed, rain, barometric pressure, and altitude), two hidden layers with ReLU activations, and an output layer predicting solar radiation. The model is trained using a mean absolute error loss function and Adam optimizer. The results demonstrate the model's effectiveness in accurately predicting solar radiation, with its convergence behavior, decreasing training loss, and accurate prediction of solar radiation patterns suggesting successful learning of the underlying relationships between weather conditions and solar radiation. The integration of solar energy production forecasting with GraphCast offers valuable insights for the renewable energy sector, enabling better planning and decision-making based on expected solar energy production. Future work could explore further model refinements, incorporation of additional weather variables, and extension to other renewable energy sources.
Related papers
- FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
We propose FengWu-Weather to Subseasonal (FengWu-W2S), which builds on the FengWu global weather forecast model and incorporates an ocean-atmosphere-land coupling structure along with a diverse perturbation strategy.
Our hindcast results demonstrate that FengWu-W2S reliably predicts atmospheric conditions out to 3-6 weeks ahead, enhancing predictive capabilities for global surface air temperature, precipitation, geopotential height and intraseasonal signals such as the Madden-Julian Oscillation (MJO) and North Atlantic Oscillation (NAO)
Our ablation experiments on forecast error growth from daily to seasonal timescales reveal potential
arXiv Detail & Related papers (2024-11-15T13:44:37Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
Solar power harbors immense potential in mitigating climate change by substantially reducing CO$_2$ emissions.
However, the inherent variability of solar irradiance poses a significant challenge for seamlessly integrating solar power into the electrical grid.
In this paper, we put forth a deep learning architecture designed to harnesstemporal context using satellite data.
arXiv Detail & Related papers (2023-06-01T19:54:39Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
This work investigates capabilities of current state-of-the-art generative models to accurately capture the data distribution behind observed solar activity states.
Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts.
arXiv Detail & Related papers (2023-04-14T14:40:32Z) - Computational Solar Energy -- Ensemble Learning Methods for Prediction
of Solar Power Generation based on Meteorological Parameters in Eastern India [0.0]
It is important to estimate the amount of solar photovoltaic (PV) power generation for a specific geographical location.
In this paper, the impact of weather parameters on solar PV power generation is estimated by several Ensemble ML (EML) models like Bagging, Boosting, Stacking, and Voting.
The results demonstrate greater prediction accuracy of around 96% for Stacking and Voting models.
arXiv Detail & Related papers (2023-01-21T19:16:03Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - Feature Construction and Selection for PV Solar Power Modeling [1.8960797847221296]
Building a model to predict photovoltaic (PV) power generation allows decision-makers to hedge energy shortages.
The solar power output is time-series data dependent on many factors, such as irradiance and weather.
A machine learning framework for 1-hour ahead solar power prediction is developed in this paper based on the historical data.
arXiv Detail & Related papers (2022-02-13T06:49:28Z) - A Moment in the Sun: Solar Nowcasting from Multispectral Satellite Data
using Self-Supervised Learning [4.844946519309793]
We develop a general model for solar nowcasting from abundant and readily available multispectral satellite data using self-supervised learning.
Our model estimates a location's future solar irradiance based on satellite observations.
We evaluate our approach for different coverage areas and forecast horizons across 25 solar sites.
arXiv Detail & Related papers (2021-12-28T03:13:44Z) - Prediction of Solar Radiation Using Artificial Neural Network [0.0]
This paper presents an algorithm that can be used to predict an hourly activity of solar radiation.
The dataset consists of temperature of air, time, humidity, wind speed, atmospheric pressure, direction of wind and solar radiation data.
Two models are created to efficiently create a system capable of interpreting patterns through supervised learning data.
arXiv Detail & Related papers (2021-04-01T20:41:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.