Prediction of Solar Radiation Using Artificial Neural Network
- URL: http://arxiv.org/abs/2104.02573v1
- Date: Thu, 1 Apr 2021 20:41:27 GMT
- Title: Prediction of Solar Radiation Using Artificial Neural Network
- Authors: Shahriar Rahman, Shazzadur Rahman and A K M Bahalul Haque
- Abstract summary: This paper presents an algorithm that can be used to predict an hourly activity of solar radiation.
The dataset consists of temperature of air, time, humidity, wind speed, atmospheric pressure, direction of wind and solar radiation data.
Two models are created to efficiently create a system capable of interpreting patterns through supervised learning data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most solar applications and systems can be reliably used to generate
electricity and power in many homes and offices. Recently, there is an increase
in many solar required systems that can be found not only in electricity
generation but other applications such as solar distillation, water heating,
heating of buildings, meteorology and producing solar conversion energy.
Prediction of solar radiation is very significant in order to accomplish the
previously mentioned objectives. In this paper, the main target is to present
an algorithm that can be used to predict an hourly activity of solar radiation.
Using a dataset that consists of temperature of air, time, humidity, wind
speed, atmospheric pressure, direction of wind and solar radiation data, an
Artificial Neural Network (ANN) model is constructed to effectively forecast
solar radiation using the available weather forecast data. Two models are
created to efficiently create a system capable of interpreting patterns through
supervised learning data and predict the correct amount of radiation present in
the atmosphere. The results of the two statistical indicators: Mean Absolute
Error (MAE) and Mean Squared Error (MSE) are performed and compared with
observed and predicted data. These two models were able to generate efficient
predictions with sufficient performance accuracy.
Related papers
- Solarcast-ML: Per Node GraphCast Extension for Solar Energy Production [0.0]
This project presents an extension to the GraphCast model, a state-of-the-art graph neural network (GNN) for global weather forecasting, by integrating solar energy production forecasting capabilities.
The proposed approach leverages the weather forecasts generated by GraphCast and trains a neural network model to predict the ratio of actual solar output to potential solar output based on various weather conditions.
The results demonstrate the model's effectiveness in accurately predicting solar radiation, with its convergence behavior, decreasing training loss, and accurate prediction of solar radiation patterns.
arXiv Detail & Related papers (2024-06-19T13:47:05Z) - Aurora: A Foundation Model of the Atmosphere [56.97266186291677]
We introduce Aurora, a large-scale foundation model of the atmosphere trained on over a million hours of diverse weather and climate data.
In under a minute, Aurora produces 5-day global air pollution predictions and 10-day high-resolution weather forecasts.
arXiv Detail & Related papers (2024-05-20T14:45:18Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
Solar power harbors immense potential in mitigating climate change by substantially reducing CO$_2$ emissions.
However, the inherent variability of solar irradiance poses a significant challenge for seamlessly integrating solar power into the electrical grid.
In this paper, we put forth a deep learning architecture designed to harnesstemporal context using satellite data.
arXiv Detail & Related papers (2023-06-01T19:54:39Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
This work investigates capabilities of current state-of-the-art generative models to accurately capture the data distribution behind observed solar activity states.
Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts.
arXiv Detail & Related papers (2023-04-14T14:40:32Z) - Solar Power Prediction Using Machine Learning [0.0]
This paper presents a machine learning-based approach for predicting solar power generation with high accuracy using a 99% AUC metric.
The approach includes data collection, pre-processing, feature selection, model selection, training, evaluation, and deployment.
The trained machine learning models are then deployed in a production environment, where they can be used to make real-time predictions about solar power generation.
arXiv Detail & Related papers (2023-03-11T06:31:46Z) - Computational Solar Energy -- Ensemble Learning Methods for Prediction
of Solar Power Generation based on Meteorological Parameters in Eastern India [0.0]
It is important to estimate the amount of solar photovoltaic (PV) power generation for a specific geographical location.
In this paper, the impact of weather parameters on solar PV power generation is estimated by several Ensemble ML (EML) models like Bagging, Boosting, Stacking, and Voting.
The results demonstrate greater prediction accuracy of around 96% for Stacking and Voting models.
arXiv Detail & Related papers (2023-01-21T19:16:03Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - Solar Irradiation Forecasting using Genetic Algorithms [0.0]
Solar energy is one of the most significant contributors to renewable energy.
For the effective management of electrical power grids, forecasting models that predict solar irradiation, with high accuracy, are needed.
The data used for training and validation is recorded from across three different geographical stations in the United States.
arXiv Detail & Related papers (2021-06-26T06:48:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.