Edge-Labeling based Directed Gated Graph Network for Few-shot Learning
- URL: http://arxiv.org/abs/2101.11299v1
- Date: Wed, 27 Jan 2021 10:14:20 GMT
- Title: Edge-Labeling based Directed Gated Graph Network for Few-shot Learning
- Authors: Peixiao Zheng, Xin Guo, Lin Qi
- Abstract summary: We propose an edge-labeling-based directed gated graph network (DGGN) for few-shot learning.
DGGN is composed of a gated node aggregation module and an improved gated recurrent unit (GRU) based edge update module.
Experiment results conducted on two benchmark datasets show that our DGGN achieves a comparable performance to the-state-of-art methods.
- Score: 8.042733995485218
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing graph-network-based few-shot learning methods obtain similarity
between nodes through a convolution neural network (CNN). However, the CNN is
designed for image data with spatial information rather than vector form node
feature. In this paper, we proposed an edge-labeling-based directed gated graph
network (DGGN) for few-shot learning, which utilizes gated recurrent units to
implicitly update the similarity between nodes. DGGN is composed of a gated
node aggregation module and an improved gated recurrent unit (GRU) based edge
update module. Specifically, the node update module adopts a gate mechanism
using activation of edge feature, making a learnable node aggregation process.
Besides, improved GRU cells are employed in the edge update procedure to
compute the similarity between nodes. Further, this mechanism is beneficial to
gradient backpropagation through the GRU sequence across layers. Experiment
results conducted on two benchmark datasets show that our DGGN achieves a
comparable performance to the-state-of-art methods.
Related papers
- Conditional Local Feature Encoding for Graph Neural Networks [14.983942698240293]
Graph neural networks (GNNs) have shown great success in learning from graph-based data.
The key mechanism of current GNNs is message passing, where a node's feature is updated based on the information passing from its local neighbourhood.
We propose conditional local feature encoding (CLFE) to help prevent the problem of node features being dominated by information from local neighbourhood.
arXiv Detail & Related papers (2024-05-08T01:51:19Z) - Ensemble Quadratic Assignment Network for Graph Matching [52.20001802006391]
Graph matching is a commonly used technique in computer vision and pattern recognition.
Recent data-driven approaches have improved the graph matching accuracy remarkably.
We propose a graph neural network (GNN) based approach to combine the advantages of data-driven and traditional methods.
arXiv Detail & Related papers (2024-03-11T06:34:05Z) - Graph Ordering Attention Networks [22.468776559433614]
Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data.
We introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood.
GOAT layer demonstrates its increased performance in modeling graph metrics that capture complex information.
arXiv Detail & Related papers (2022-04-11T18:13:19Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
This paper introduces a graph generative process to model how the observed edges are generated by aggregating the node interactions over a set of overlapping node communities.
We partition each edge into the summation of multiple community-specific weighted edges and use them to define community-specific GNNs.
A variational inference framework is proposed to jointly learn a GNN based inference network that partitions the edges into different communities, these community-specific GNNs, and a GNN based predictor that combines community-specific GNNs for the end classification task.
arXiv Detail & Related papers (2022-02-07T14:37:50Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
We show that in typical heterphilous graphs, the edges may be directed, and whether to treat the edges as is or simply make them undirected greatly affects the performance of the GNN models.
We develop a model that adaptively learns the directionality of the graph, and exploits the underlying long-distance correlations between nodes.
arXiv Detail & Related papers (2021-11-19T08:54:21Z) - Feature Correlation Aggregation: on the Path to Better Graph Neural
Networks [37.79964911718766]
Prior to the introduction of Graph Neural Networks (GNNs), modeling and analyzing irregular data, particularly graphs, was thought to be the Achilles' heel of deep learning.
This paper introduces a central node permutation variant function through a frustratingly simple and innocent-looking modification to the core operation of a GNN.
A tangible boost in performance of the model is observed where the model surpasses previous state-of-the-art results by a significant margin while employing fewer parameters.
arXiv Detail & Related papers (2021-09-20T05:04:26Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
Graph neural networks (GNNs) aim to model the local graph structures and capture the hierarchical patterns by aggregating the information from neighbors.
It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features.
We propose Policy-GNN, a meta-policy framework that models the sampling procedure and message passing of GNNs into a combined learning process.
arXiv Detail & Related papers (2020-06-26T17:03:06Z) - Sequential Graph Convolutional Network for Active Learning [53.99104862192055]
We propose a novel pool-based Active Learning framework constructed on a sequential Graph Convolution Network (GCN)
With a small number of randomly sampled images as seed labelled examples, we learn the parameters of the graph to distinguish labelled vs unlabelled nodes.
We exploit these characteristics of GCN to select the unlabelled examples which are sufficiently different from labelled ones.
arXiv Detail & Related papers (2020-06-18T00:55:10Z) - Towards Deeper Graph Neural Networks with Differentiable Group
Normalization [61.20639338417576]
Graph neural networks (GNNs) learn the representation of a node by aggregating its neighbors.
Over-smoothing is one of the key issues which limit the performance of GNNs as the number of layers increases.
We introduce two over-smoothing metrics and a novel technique, i.e., differentiable group normalization (DGN)
arXiv Detail & Related papers (2020-06-12T07:18:02Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.