Conditional Local Feature Encoding for Graph Neural Networks
- URL: http://arxiv.org/abs/2405.04755v1
- Date: Wed, 8 May 2024 01:51:19 GMT
- Title: Conditional Local Feature Encoding for Graph Neural Networks
- Authors: Yongze Wang, Haimin Zhang, Qiang Wu, Min Xu,
- Abstract summary: Graph neural networks (GNNs) have shown great success in learning from graph-based data.
The key mechanism of current GNNs is message passing, where a node's feature is updated based on the information passing from its local neighbourhood.
We propose conditional local feature encoding (CLFE) to help prevent the problem of node features being dominated by information from local neighbourhood.
- Score: 14.983942698240293
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Graph neural networks (GNNs) have shown great success in learning from graph-based data. The key mechanism of current GNNs is message passing, where a node's feature is updated based on the information passing from its local neighbourhood. A limitation of this mechanism is that node features become increasingly dominated by the information aggregated from the neighbourhood as we use more rounds of message passing. Consequently, as the GNN layers become deeper, adjacent node features tends to be similar, making it more difficult for GNNs to distinguish adjacent nodes, thereby, limiting the performance of GNNs. In this paper, we propose conditional local feature encoding (CLFE) to help prevent the problem of node features being dominated by the information from local neighbourhood. The idea of our method is to extract the node hidden state embedding from message passing process and concatenate it with the nodes feature from previous stage, then we utilise linear transformation to form a CLFE based on the concatenated vector. The CLFE will form the layer output to better preserve node-specific information, thus help to improve the performance of GNN models. To verify the feasibility of our method, we conducted extensive experiments on seven benchmark datasets for four graph domain tasks: super-pixel graph classification, node classification, link prediction, and graph regression. The experimental results consistently demonstrate that our method improves model performance across a variety of baseline GNN models for all four tasks.
Related papers
- Degree-based stratification of nodes in Graph Neural Networks [66.17149106033126]
We modify the Graph Neural Network (GNN) architecture so that the weight matrices are learned, separately, for the nodes in each group.
This simple-to-implement modification seems to improve performance across datasets and GNN methods.
arXiv Detail & Related papers (2023-12-16T14:09:23Z) - NDGGNET-A Node Independent Gate based Graph Neural Networks [6.155450481110693]
For nodes with sparse connectivity, it is difficult to obtain enough information through a single GNN layer.
In this thesis, we define a novel framework that allows the normal GNN model to accommodate more layers.
Experimental results show that our proposed model can effectively increase the model depth and perform well on several datasets.
arXiv Detail & Related papers (2022-05-11T08:51:04Z) - Graph Ordering Attention Networks [22.468776559433614]
Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data.
We introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood.
GOAT layer demonstrates its increased performance in modeling graph metrics that capture complex information.
arXiv Detail & Related papers (2022-04-11T18:13:19Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
This paper introduces a graph generative process to model how the observed edges are generated by aggregating the node interactions over a set of overlapping node communities.
We partition each edge into the summation of multiple community-specific weighted edges and use them to define community-specific GNNs.
A variational inference framework is proposed to jointly learn a GNN based inference network that partitions the edges into different communities, these community-specific GNNs, and a GNN based predictor that combines community-specific GNNs for the end classification task.
arXiv Detail & Related papers (2022-02-07T14:37:50Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
We show that in typical heterphilous graphs, the edges may be directed, and whether to treat the edges as is or simply make them undirected greatly affects the performance of the GNN models.
We develop a model that adaptively learns the directionality of the graph, and exploits the underlying long-distance correlations between nodes.
arXiv Detail & Related papers (2021-11-19T08:54:21Z) - Feature Correlation Aggregation: on the Path to Better Graph Neural
Networks [37.79964911718766]
Prior to the introduction of Graph Neural Networks (GNNs), modeling and analyzing irregular data, particularly graphs, was thought to be the Achilles' heel of deep learning.
This paper introduces a central node permutation variant function through a frustratingly simple and innocent-looking modification to the core operation of a GNN.
A tangible boost in performance of the model is observed where the model surpasses previous state-of-the-art results by a significant margin while employing fewer parameters.
arXiv Detail & Related papers (2021-09-20T05:04:26Z) - Local Augmentation for Graph Neural Networks [78.48812244668017]
We introduce the local augmentation, which enhances node features by its local subgraph structures.
Based on the local augmentation, we further design a novel framework: LA-GNN, which can apply to any GNN models in a plug-and-play manner.
arXiv Detail & Related papers (2021-09-08T18:10:08Z) - Enhance Information Propagation for Graph Neural Network by
Heterogeneous Aggregations [7.3136594018091134]
Graph neural networks are emerging as continuation of deep learning success w.r.t. graph data.
We propose to enhance information propagation among GNN layers by combining heterogeneous aggregations.
We empirically validate the effectiveness of HAG-Net on a number of graph classification benchmarks.
arXiv Detail & Related papers (2021-02-08T08:57:56Z) - Identity-aware Graph Neural Networks [63.6952975763946]
We develop a class of message passing Graph Neural Networks (ID-GNNs) with greater expressive power than the 1-WL test.
ID-GNN extends existing GNN architectures by inductively considering nodes' identities during message passing.
We show that transforming existing GNNs to ID-GNNs yields on average 40% accuracy improvement on challenging node, edge, and graph property prediction tasks.
arXiv Detail & Related papers (2021-01-25T18:59:01Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
Graph neural networks (GNNs) aim to model the local graph structures and capture the hierarchical patterns by aggregating the information from neighbors.
It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features.
We propose Policy-GNN, a meta-policy framework that models the sampling procedure and message passing of GNNs into a combined learning process.
arXiv Detail & Related papers (2020-06-26T17:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.