論文の概要: Predicting Participation in Cancer Screening Programs with Machine
Learning
- arxiv url: http://arxiv.org/abs/2101.11614v1
- Date: Wed, 27 Jan 2021 11:05:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-13 19:39:10.142824
- Title: Predicting Participation in Cancer Screening Programs with Machine
Learning
- Title(参考訳): 機械学習によるがん検診プログラムへの参加予測
- Authors: Donghyun Kim
- Abstract要約: 本稿では,ランダム林分分類器,サポートベクターマシン,勾配ブースト決定木,ニューラルネットワークに基づく機械学習モデルを提案する。
トップパフォーマンスモデルはグラデーションブースト決定木に基づいており、受信機動作特性曲線(AUC-ROC)0.8706および平均精度0.8776の領域を達成した。
- 参考スコア(独自算出の注目度): 5.113102235191869
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present machine learning models based on random forest
classifiers, support vector machines, gradient boosted decision trees, and
artificial neural networks to predict participation in cancer screening
programs in South Korea. The top performing model was based on gradient boosted
decision trees and achieved an area under the receiver operating characteristic
curve (AUC-ROC) of 0.8706 and average precision of 0.8776. The results of this
study are encouraging and suggest that with further research, these models can
be directly applied to Korea's healthcare system, thus increasing participation
in Korea's National Cancer Screening Program.
- Abstract(参考訳): 本稿では,韓国におけるがん検診プログラムへの参加を予測するために,ランダムな森林分類器,サポートベクタマシン,勾配向上決定木,人工ニューラルネットワークを用いた機械学習モデルを提案する。
トップパフォーマンスモデルはグラデーションブースト決定木に基づいており、受信機動作特性曲線(AUC-ROC)0.8706および平均精度0.8776の領域を達成した。
本研究の成果は、さらなる研究により、これらのモデルが朝鮮の医療システムに直接適用され、朝鮮の国立がんスクリーニングプログラムへの関与が高まることを示唆するものである。
関連論文リスト
- A Pathology-Based Machine Learning Method to Assist in Epithelial
Dysplasia Diagnosis [0.0]
上皮性Dysplasia(ED)は口腔癌に先行する病変にみられる組織変化である。
本研究では, 変形性上皮の検出を支援するために, 計算コストの低い分類システムを設計する手法を提案する。
論文 参考訳(メタデータ) (2022-04-07T16:45:28Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - Interpretability methods of machine learning algorithms with
applications in breast cancer diagnosis [1.1470070927586016]
我々は,グローバルサロゲート(GS)法,個人期待(ICE)プロット,条件シェープ値(SV)などの解釈可能性技術を用いた。
乳がん診断における最良の成績は,提案したERN(精度96.6%,ROC曲線0.96)により得られた。
論文 参考訳(メタデータ) (2022-02-04T13:41:30Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Convolutional neural network based on transfer learning for breast
cancer screening [0.0]
本稿では, 超音波画像から乳がんを正確に同定するために, 深部畳み込みニューラルネットワークに基づくアルゴリズムを提案する。
537 Benign, 360 malignant, 133 normal image の胸部超音波データセットを用いていくつかの実験を行った。
k-foldクロスバリデーションとバッグアンサンブルを用いて、99.5%の精度と99.6%の感度を実現した。
論文 参考訳(メタデータ) (2021-12-22T02:27:12Z) - Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in
Artificial Intelligence [79.038671794961]
我々はUCADI(Unified CT-COVID AI Diagnostic Initiative)を立ち上げ、各ホスト機関でAIモデルを分散的にトレーニングし、独立して実行することができる。
本研究は,中国とイギリスに所在する23の病院で採取した3,336例の胸部CT9,573例について検討した。
論文 参考訳(メタデータ) (2021-11-18T00:43:41Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Lymph Node Graph Neural Networks for Cancer Metastasis Prediction [0.342658286826597]
局所リンパ節に転移する既存の癌の画像特徴をグラフベースで表現する手法を提案する。
我々は,遠隔転移のリスクを正確に予測するために,エッジゲートグラフ畳み込みネットワーク(Gated-GCN)を訓練した。
論文 参考訳(メタデータ) (2021-06-03T09:28:14Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
前立腺癌(PCa)は、2020年に約141万件の新規感染者と約37万5000人の死者を出した男性の死因の1つである。
自動診断を行うには、まず前立腺組織サンプルをギガピクセル分解能全スライド画像にデジタイズする。
パッチと呼ばれる小さなサブイメージが抽出され、予測され、パッチレベルの分類が得られる。
論文 参考訳(メタデータ) (2021-05-20T18:13:58Z) - Comparisons of Graph Neural Networks on Cancer Classification Leveraging
a Joint of Phenotypic and Genetic Features [7.381190270069632]
各種グラフニューラルネットワーク(GNNs)を癌型分類のための表現型と遺伝的特徴の関節を用いて評価した。
GNN、ChebNet、GraphSAGE、TAGCNは最高のパフォーマンスを示し、GATは最悪のパフォーマンスを示した。
論文 参考訳(メタデータ) (2021-01-14T20:53:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。