論文の概要: Interpretability methods of machine learning algorithms with
applications in breast cancer diagnosis
- arxiv url: http://arxiv.org/abs/2202.02131v1
- Date: Fri, 4 Feb 2022 13:41:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-07 20:51:08.459199
- Title: Interpretability methods of machine learning algorithms with
applications in breast cancer diagnosis
- Title(参考訳): 機械学習アルゴリズムの解釈可能性手法と乳癌診断への応用
- Authors: Panagiota Karatza, Kalliopi V. Dalakleidi, Maria Athanasiou,
Konstantina S. Nikita
- Abstract要約: 我々は,グローバルサロゲート(GS)法,個人期待(ICE)プロット,条件シェープ値(SV)などの解釈可能性技術を用いた。
乳がん診断における最良の成績は,提案したERN(精度96.6%,ROC曲線0.96)により得られた。
- 参考スコア(独自算出の注目度): 1.1470070927586016
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Early detection of breast cancer is a powerful tool towards decreasing its
socioeconomic burden. Although, artificial intelligence (AI) methods have shown
remarkable results towards this goal, their "black box" nature hinders their
wide adoption in clinical practice. To address the need for AI guided breast
cancer diagnosis, interpretability methods can be utilized. In this study, we
used AI methods, i.e., Random Forests (RF), Neural Networks (NN) and Ensembles
of Neural Networks (ENN), towards this goal and explained and optimized their
performance through interpretability techniques, such as the Global Surrogate
(GS) method, the Individual Conditional Expectation (ICE) plots and the Shapley
values (SV). The Wisconsin Diagnostic Breast Cancer (WDBC) dataset of the open
UCI repository was used for the training and evaluation of the AI algorithms.
The best performance for breast cancer diagnosis was achieved by the proposed
ENN (96.6% accuracy and 0.96 area under the ROC curve), and its predictions
were explained by ICE plots, proving that its decisions were compliant with
current medical knowledge and can be further utilized to gain new insights in
the pathophysiological mechanisms of breast cancer. Feature selection based on
features' importance according to the GS model improved the performance of the
RF (leading the accuracy from 96.49% to 97.18% and the area under the ROC curve
from 0.96 to 0.97) and feature selection based on features' importance
according to SV improved the performance of the NN (leading the accuracy from
94.6% to 95.53% and the area under the ROC curve from 0.94 to 0.95). Compared
to other approaches on the same dataset, our proposed models demonstrated state
of the art performance while being interpretable.
- Abstract(参考訳): 乳がんの早期発見は、その社会経済的負担を軽減する強力な手段である。
人工知能(AI)の手法はこの目標に向けて顕著な成果を上げているが、その「ブラックボックス」の性質は臨床実践において広く採用されるのを妨げている。
AI誘導乳がん診断の必要性に対処するために、解釈可能性法を用いることができる。
本研究では、この目標に向けて、ランダムフォレスト(RF)、ニューラルネットワーク(NN)、ニューラルネットワーク(ENN)といったAI手法を使用し、グローバルサロゲート(GS)法、個人条件予測(ICE)プロット、シェープ値(SV)などの解釈可能性技術を用いて、その性能を説明・最適化した。
オープンなUCIリポジトリのウィスコンシン診断乳癌(WDBC)データセットは、AIアルゴリズムのトレーニングと評価に使用された。
乳がん診断の最良の成績はenn (96.6% 精度と roc 曲線下の 0.96 領域) によって達成され、その予測はice plots によって説明され、その決定は現在の医学的知識に準拠しており、乳がんの病態生理的メカニズムに関する新たな知見を得るのに利用できることが証明された。
gsモデルによる特徴の重要度に基づく特徴選択はrfの性能を改善し(精度96.49%から97.18%、roc曲線下の領域は0.09から0.097)、特徴の重要度に基づく特徴選択はnnの性能を改善した(精度94.6%から95.53%、roc曲線下の領域は0.094から0.095)。
同じデータセット上の他のアプローチと比較して,提案モデルでは解釈可能でありながら,アートパフォーマンスの状態を実証した。
関連論文リスト
- Computational Pathology for Accurate Prediction of Breast Cancer Recurrence: Development and Validation of a Deep Learning-based Tool [0.40205899806543505]
Deep-BCR-Autoは、乳がん再発リスクを予測するディープラーニングベースの計算病理学アプローチである。
我々の方法論は2つの独立したコホートで検証された。
Deep-BCR-Autoは、患者を低頻度と高頻度のリスクカテゴリに分類する上で、堅牢なパフォーマンスを示した。
論文 参考訳(メタデータ) (2024-09-23T19:22:06Z) - Two new feature selection methods based on learn-heuristic techniques for breast cancer prediction: A comprehensive analysis [6.796017024594715]
帝国主義競争アルゴリズム(ICA)とバットアルゴリズム(BA)に基づく2つの新しい特徴選択法を提案する。
本研究は, 診断モデルの効率を向上し, 臨床医師がこれまでよりもはるかに正確かつ信頼性の高い意思決定を行えるよう包括的分析を行うことを目的とする。
論文 参考訳(メタデータ) (2024-07-19T19:07:53Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
筋萎縮性側索硬化症(Amyotrophic Lateral Sclerosis、ALS)は、急速に進行する神経変性疾患である。
iDPP@CLEF 2024チャレンジを先導した今回の調査は,アプリから得られるセンサデータを活用することに焦点を当てている。
論文 参考訳(メタデータ) (2024-07-10T19:17:23Z) - AXIAL: Attention-based eXplainability for Interpretable Alzheimer's Localized Diagnosis using 2D CNNs on 3D MRI brain scans [43.06293430764841]
本研究では,3次元MRIを用いたアルツハイマー病診断の革新的手法を提案する。
提案手法では,2次元CNNがボリューム表現を抽出できるソフトアテンション機構を採用している。
ボクセルレベルの精度では、どの領域に注意が払われているかを同定し、これらの支配的な脳領域を同定する。
論文 参考訳(メタデータ) (2024-07-02T16:44:00Z) - Breast Cancer Diagnosis: A Comprehensive Exploration of Explainable Artificial Intelligence (XAI) Techniques [38.321248253111776]
乳がんの診断・診断における説明可能な人工知能(XAI)技術の適用について検討する。
複雑なAIモデルと実用的な医療アプリケーションの間のギャップを埋めることにおけるXAIの可能性を強調することを目的としている。
論文 参考訳(メタデータ) (2024-06-01T18:50:03Z) - Region-specific Risk Quantification for Interpretable Prognosis of COVID-19 [36.731054010197035]
新型コロナウイルス(COVID-19)のパンデミックは、世界的な公衆衛生を悪化させ、正確な診断と疾病対策の介入を必要とし、死亡率を下げている。
胸部X線画像(CXR)を用いて、新型コロナウイルスの予後に対する理解と信頼の向上を目的とした、解釈可能な深層生存予測モデルを提案する。
論文 参考訳(メタデータ) (2024-05-05T05:08:38Z) - BioFusionNet: Deep Learning-Based Survival Risk Stratification in ER+ Breast Cancer Through Multifeature and Multimodal Data Fusion [16.83901927767791]
画像から得られる特徴を遺伝的・臨床的データと融合して全体像を得る深層学習フレームワークであるBioFusionNetを提案する。
本モデルでは, 平均一致率0.77, 曲線0.84の時間依存領域を達成し, 最先端の手法より優れていた。
論文 参考訳(メタデータ) (2024-02-16T14:19:33Z) - Evaluating LeNet Algorithms in Classification Lung Cancer from
Iraq-Oncology Teaching Hospital/National Center for Cancer Diseases [0.0]
深層学習モデルであるLeNetは肺腫瘍の検出に用いられている。
提案システムはイラク・オンコロジー教育病院・国立がん疾患センターで評価された。
論文 参考訳(メタデータ) (2023-05-19T19:23:08Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
深層学習モデルは、2011年1月から2018年4月までに収集された非外傷性ICHを用いた1868個のNCCTスキャンを用いて開発された。
診断成績は臨床医の成績と比較した。
臨床医は, システム拡張による特定の出血エチオロジーの感度, 特異性, 精度を著しく改善した。
論文 参考訳(メタデータ) (2023-02-02T08:45:17Z) - Improving the diagnosis of breast cancer based on biophysical ultrasound
features utilizing machine learning [0.0]
乳がん検出のための生物物理学的特徴に基づく機械学習手法を提案する。
以上より, 乳腺病変のタイプとサイズは, 分類では98.0%, 操作特性曲線では0.98以上であった。
論文 参考訳(メタデータ) (2022-07-13T23:53:09Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。