Impact of correlations and heavy-tails on quantum error correction
- URL: http://arxiv.org/abs/2101.11631v2
- Date: Tue, 25 May 2021 14:33:00 GMT
- Title: Impact of correlations and heavy-tails on quantum error correction
- Authors: B.D. Clader, Colin J. Trout, Jeff P. Barnes, Kevin Schultz, Gregory
Quiroz, Paraj Titum
- Abstract summary: We show that space- and time-correlated single-qubit rotation errors can lead to high-weight errors in a quantum circuit when the rotation angles are drawn from heavy-tailed distributions.
This leads to a breakdown of quantum error correction, yielding reduced or in some cases no protection of the encoded logical qubits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show that space- and time-correlated single-qubit rotation errors can lead
to high-weight errors in a quantum circuit when the rotation angles are drawn
from heavy-tailed distributions. This leads to a breakdown of quantum error
correction, yielding reduced or in some cases no protection of the encoded
logical qubits. While heavy-tailed phenomena are prevalent in the natural
world, there is very little research as to whether noise with these statistics
exist in current quantum processing devices. Furthermore, it is an open problem
to develop tomographic or noise spectroscopy protocols that could test for the
existence of noise with such statistics. These results suggest the need for
quantum characterization methods that can reliably detect or reject the
presence of such errors together with continued first-principles studies of the
origins of space- and time-correlated noise in quantum processors. If such
noise does exist, physical or control-based mitigation protocols must be
developed to mitigate this noise as it would severely hinder the performance of
fault-tolerant quantum computers.
Related papers
- Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - Practical limitations of quantum data propagation on noisy quantum processors [0.9362259192191963]
We show that owing to the noisy nature of current quantum processors, such a quantum algorithm will require single- and two-qubit gates with very low error probability to produce reliable results.
Specifically, we provide the upper bounds on how the relative error in variational parameters' propagation scales with the probability of noise in quantum hardware.
arXiv Detail & Related papers (2023-06-22T17:12:52Z) - Non-Markovian noise sources for quantum error mitigation [0.0]
We present a non-Markovian model of quantum state evolution and a quantum error mitigation cost function tailored for NISQ devices.
Our findings reveal that the cost function for quantum error mitigation increases as the coupling strength between the quantum system and its environment intensifies.
arXiv Detail & Related papers (2023-02-10T05:10:27Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Quantum Error Correction: Noise-adapted Techniques and Applications [2.122752621320654]
Theory of quantum error correction provides a scheme by which the effects of such noise on quantum states can be mitigated.
We focus on recent theoretical advances in the domain of noise-adapted QEC, and highlight some key open questions.
We conclude with a review of the theory of quantum fault tolerance which gives a quantitative estimate of the physical noise threshold below which error-resilient quantum computation is possible.
arXiv Detail & Related papers (2022-07-31T05:23:50Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Error-Mitigated Quantum Metrology via Virtual Purification [0.0]
We propose an error-mitigated quantum metrology that can filter out unknown fluctuating noise.
We demonstrate that our protocol mitigates systematic errors and recovers superclassical scaling in a practical situation with time-inhomogeneous bias-inducing noise.
arXiv Detail & Related papers (2021-12-03T11:07:50Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
In quantum information processing quantum operations are often processed alongside measurements which result in classical data.
Non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution.
Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states.
arXiv Detail & Related papers (2021-10-13T18:00:13Z) - Mitigating errors by quantum verification and post-selection [0.0]
We present a technique for quantum error mitigation based on quantum verification, the so-called accreditation protocol, together with post-selection.
We discuss the sample complexity of our procedure and provide rigorous guarantees of errors being mitigated under some realistic assumptions on the noise.
Our technique also allows for time dependant behaviours, as we allow for the output states to be different between different runs of the accreditation protocol.
arXiv Detail & Related papers (2021-09-29T10:29:39Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.