論文の概要: Multi-Modal Aesthetic Assessment for MObile Gaming Image
- arxiv url: http://arxiv.org/abs/2101.11700v1
- Date: Wed, 27 Jan 2021 21:48:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-01 19:46:04.547739
- Title: Multi-Modal Aesthetic Assessment for MObile Gaming Image
- Title(参考訳): モビルゲーミング画像のマルチモーダル審美性評価
- Authors: Zhenyu Lei, Yejing Xie, Suiyi Ling, Andreas Pastor, Junle Wang,
Patrick Le Callet
- Abstract要約: 提案モデルは,4つのゲーム美的次元の予測において,最先端の審美的指標を著しく上回る。
我々の傾向は、様々な審美的関連次元間の相関を探求し、学習し、一般化性能をさらに向上させることである。
- 参考スコア(独自算出の注目度): 30.962059154484912
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the proliferation of various gaming technology, services, game styles,
and platforms, multi-dimensional aesthetic assessment of the gaming contents is
becoming more and more important for the gaming industry. Depending on the
diverse needs of diversified game players, game designers, graphical
developers, etc. in particular conditions, multi-modal aesthetic assessment is
required to consider different aesthetic dimensions/perspectives. Since there
are different underlying relationships between different aesthetic dimensions,
e.g., between the `Colorfulness' and `Color Harmony', it could be advantageous
to leverage effective information attached in multiple relevant dimensions. To
this end, we solve this problem via multi-task learning. Our inclination is to
seek and learn the correlations between different aesthetic relevant dimensions
to further boost the generalization performance in predicting all the aesthetic
dimensions. Therefore, the `bottleneck' of obtaining good predictions with
limited labeled data for one individual dimension could be unplugged by
harnessing complementary sources of other dimensions, i.e., augment the
training data indirectly by sharing training information across dimensions.
According to experimental results, the proposed model outperforms
state-of-the-art aesthetic metrics significantly in predicting four gaming
aesthetic dimensions.
- Abstract(参考訳): 様々なゲーム技術、サービス、ゲームスタイル、プラットフォームの普及に伴い、ゲームコンテンツに対する多次元の美的評価がゲーム業界にとってますます重要になっている。
多様なゲームプレーヤー、ゲームデザイナー、グラフィカル開発者などの多様なニーズに応じて。
特に,マルチモーダル審美評価は,異なる審美的寸法・観察的要素を検討するために必要である。
異なる美的次元、例えば「彩度」と「色彩調和」の間には異なる基礎的な関係があるため、複数の関連する次元に付随する効果的な情報を活用するのが有利である。
そのためには、この問題をマルチタスク学習で解決します。
我々の傾向は、異なる審美的関連次元間の相関を探求し、学習し、すべての審美的次元を予測する際の一般化性能をさらに向上させることである。
したがって、1次元の制限されたラベル付きデータで良好な予測を得るための「ボトルネック」は、他の次元の補完的情報源、すなわち、次元間でトレーニング情報を共有して間接的にトレーニングデータを増強することで解くことができる。
実験結果から,提案モデルは4つのゲーム美的次元を予測する上で,最先端の審美的指標を著しく上回る結果を得た。
関連論文リスト
- IRISformer: Dense Vision Transformers for Single-Image Inverse Rendering
in Indoor Scenes [99.76677232870192]
我々は、高密度な視覚変換器であるIRISformerが、逆レンダリングに必要なシングルタスクとマルチタスクの推論の両方で優れていることを示す。
具体的には,屋内シーンの単一画像から深度,正規度,空間変化アルベド,粗さ,照明を同時に推定するトランスフォーマーアーキテクチャを提案する。
ベンチマークデータセットを用いた評価では、上記の各タスクについて最先端の結果が示され、オブジェクト挿入や物質編集などの応用を、制約のない1つの実画像で実現する。
論文 参考訳(メタデータ) (2022-06-16T19:50:55Z) - Multi-Game Decision Transformers [49.257185338595434]
そこで本研究では,1つのトランスフォーマーモデルを用いて,最大46個のAtariゲーム群を,人間に近いパフォーマンスで同時にプレイ可能であることを示す。
オンラインやオフラインのRL手法や行動クローンなど,マルチゲーム設定におけるいくつかのアプローチを比較した。
マルチゲーム決定変換モデルは、最高のスケーラビリティとパフォーマンスを提供します。
論文 参考訳(メタデータ) (2022-05-30T16:55:38Z) - Exploring Dimensionality Reduction Techniques in Multilingual
Transformers [64.78260098263489]
本稿では,多言語シームス変圧器の性能に及ぼす次元還元法の影響を包括的に考察する。
これは、それぞれ91.58% pm 2.59%$と54.65% pm 32.20%$の次元を平均で減少させることが可能であることを示している。
論文 参考訳(メタデータ) (2022-04-18T17:20:55Z) - Multimodal perception for dexterous manipulation [14.314776558032166]
視覚と触覚の変換のためのクロスモーダルな知覚データ生成フレームワークを提案する。
本稿では,空間的特徴と時間次元を考慮した触覚テクスチャ認識のための時間的アテンションモデルを提案する。
論文 参考訳(メタデータ) (2021-12-28T21:20:26Z) - Considering user agreement in learning to predict the aesthetic quality [35.255447771350404]
本稿では、平均意見スコアと標準偏差の両方をエンドツーエンドに予測するために、再適応型マルチタスクアテンションネットワークを提案する。
このような損失により、モデルは観察者の意見の多様性に関連するコンテンツの不確実性を学ぶことが奨励される。
提案したマルチタスク美的モデルが,2種類の審美的データセットに対して最先端のパフォーマンスを実現することを示す実験が実施されている。
論文 参考訳(メタデータ) (2021-10-13T18:00:36Z) - Efficient Multi-Modal Embeddings from Structured Data [0.0]
マルチモーダルワードセマンティクスは、知覚入力による埋め込みを強化することを目的としている。
ビジュアルグラウンドは言語アプリケーションにも貢献できる。
新しい埋め込みは、テキストベースの埋め込みのための補完的な情報を伝達する。
論文 参考訳(メタデータ) (2021-10-06T08:42:09Z) - Perceiver: General Perception with Iterative Attention [85.65927856589613]
我々は,トランスフォーマーを基盤とするモデルであるperceiverを紹介する。
このアーキテクチャは、分類タスクにおいて、競争的、または強固な、専門的なモデル以上のパフォーマンスを示す。
また、AudioSetのすべてのモダリティの最先端の結果を超えています。
論文 参考訳(メタデータ) (2021-03-04T18:20:50Z) - Individualized Context-Aware Tensor Factorization for Online Games
Predictions [6.602875221541352]
ユーザパフォーマンスとゲーム結果を予測するために,Neural Individualized Context-aware Embeddings(NICE)モデルを提案する。
提案手法は,ユーザとコンテキストの潜在表現を学習することで,異なるコンテキストにおける個人行動の違いを識別する。
我々は,MOBAゲームLeague of Legendsのデータセットを用いて,勝利の予測,個々のユーザパフォーマンス,ユーザエンゲージメントを大幅に改善することを示した。
論文 参考訳(メタデータ) (2021-02-22T20:46:02Z) - Embedded Deep Bilinear Interactive Information and Selective Fusion for
Multi-view Learning [70.67092105994598]
本稿では,上記の2つの側面に着目した,新しい多視点学習フレームワークを提案する。
特に、さまざまな深層ニューラルネットワークをトレーニングして、様々なビュー内表現を学習する。
6つの公開データセットの実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-07-13T01:13:23Z) - Navigating the Landscape of Multiplayer Games [20.483315340460127]
大規模ゲームの応答グラフにネットワーク測度を適用することで,ゲームのランドスケープを創出できることを示す。
本研究は, 標準ゲームから複雑な経験ゲームまで, 訓練されたエージェント同士のパフォーマンスを計測する領域における知見について述べる。
論文 参考訳(メタデータ) (2020-05-04T16:58:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。