論文の概要: Perceptual Similarity for Measuring Decision-Making Style and Policy Diversity in Games
- arxiv url: http://arxiv.org/abs/2408.06051v2
- Date: Fri, 30 Aug 2024 03:19:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-02 17:38:32.997710
- Title: Perceptual Similarity for Measuring Decision-Making Style and Policy Diversity in Games
- Title(参考訳): ゲームにおける意思決定スタイルと政策多様性の知覚的類似性
- Authors: Chiu-Chou Lin, Wei-Chen Chiu, I-Chen Wu,
- Abstract要約: プレイスタイルとして知られる意思決定スタイルの定義と測定は、ゲームにおいて不可欠である。
本稿では,様々な状態心理学を用いたマルチスケール分析,粒度に根ざした知覚核,交差点対結合法を有効利用して精度を高めるための3つの拡張点を紹介する。
そこで本研究では,エンド・ツー・エンドのゲーム分析と,多種多様なプレイスタイルのための人工知能の進化について検討した。
- 参考スコア(独自算出の注目度): 28.289135305943056
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Defining and measuring decision-making styles, also known as playstyles, is crucial in gaming, where these styles reflect a broad spectrum of individuality and diversity. However, finding a universally applicable measure for these styles poses a challenge. Building on Playstyle Distance, the first unsupervised metric to measure playstyle similarity based on game screens and raw actions, we introduce three enhancements to increase accuracy: multiscale analysis with varied state granularity, a perceptual kernel rooted in psychology, and the utilization of the intersection-over-union method for efficient evaluation. These innovations not only advance measurement precision but also offer insights into human cognition of similarity. Across two racing games and seven Atari games, our techniques significantly improve the precision of zero-shot playstyle classification, achieving an accuracy exceeding 90 percent with fewer than 512 observation-action pairs, which is less than half an episode of these games. Furthermore, our experiments with 2048 and Go demonstrate the potential of discrete playstyle measures in puzzle and board games. We also develop an algorithm for assessing decision-making diversity using these measures. Our findings improve the measurement of end-to-end game analysis and the evolution of artificial intelligence for diverse playstyles.
- Abstract(参考訳): プレイスタイルとして知られる意思決定スタイルの定義と測定はゲームにおいて重要であり、これらのスタイルは個人性と多様性の幅広い範囲を反映している。
しかし、これらのスタイルに対して普遍的に適用可能な尺度を見つけることは困難である。
ゲーム画面と生のアクションに基づいてプレイスタイルの類似度を測定する最初の教師なし指標であるPlaystyle Distanceをベースとして,様々な状態の粒度を持つマルチスケール分析,心理学に根ざした知覚核,効率的評価のためのクロスオーバー・ユニオン法の利用という,精度向上のための3つの拡張を導入する。
これらの革新は測定精度を向上するだけでなく、人間の類似性認知に関する洞察も提供する。
2つのレースゲームと7つのアタリゲームの間で、我々の技術はゼロショットプレイスタイルの分類の精度を大幅に向上させ、512組未満の観察アクションペアで90%を超える精度を実現した。
さらに,2048年とGoを用いた実験では,パズルやボードゲームにおける個別のプレイスタイル尺度の可能性を示した。
また,これらの指標を用いて意思決定の多様性を評価するアルゴリズムを開発した。
そこで本研究では,エンド・ツー・エンドのゲーム分析と,多種多様なプレイスタイルのための人工知能の進化について検討した。
関連論文リスト
- Measuring Diversity of Game Scenarios [15.100151112002235]
我々は,現在の文学と実践のギャップを埋めることを目指しており,ゲームシナリオにおける多様性の測定と統合のための効果的な戦略に関する洞察を提供する。
この調査は、様々なゲームシナリオにおける将来の研究の道筋を示すだけでなく、多様性をゲームデザインと開発の重要な要素として活用しようとする業界の実践者のためのハンドブックとしても機能する。
論文 参考訳(メタデータ) (2024-04-15T07:59:52Z) - Finding mixed-strategy equilibria of continuous-action games without
gradients using randomized policy networks [83.28949556413717]
グラデーションへのアクセスを伴わない連続アクションゲームのナッシュ平衡を近似的に計算する問題について検討する。
ニューラルネットワークを用いてプレイヤーの戦略をモデル化する。
本論文は、制約のない混合戦略と勾配情報のない一般的な連続アクションゲームを解決する最初の方法である。
論文 参考訳(メタデータ) (2022-11-29T05:16:41Z) - Detecting Individual Decision-Making Style: Exploring Behavioral
Stylometry in Chess [4.793072503820555]
チェスの文脈における行動スタイメトリーに対するトランスフォーマーに基づくアプローチを提案する。
本手法は,数発の分類フレームワークで動作し,数千人の候補選手の中から選手を正確に識別することができる。
我々は、チェスにおける人間のスタイルと潜在的な倫理的意味について、結果の埋め込みが明らかにするものをより広く検討する。
論文 参考訳(メタデータ) (2022-08-02T11:18:16Z) - Collusion Detection in Team-Based Multiplayer Games [57.153233321515984]
チームベースのマルチプレイヤーゲームにおいて,協調動作を検出するシステムを提案する。
提案手法は,ゲーム内行動パターンと組み合わせたプレイヤーの社会的関係を解析する。
次に,非教師なし学習手法であるアイソレーションフォレストによる検出を自動化する。
論文 参考訳(メタデータ) (2022-03-10T02:37:39Z) - Towards Objective Metrics for Procedurally Generated Video Game Levels [2.320417845168326]
シミュレーションに基づく評価指標を2つ導入し, 生成レベルの多様性と難易度を測定した。
我々の多様性指標は、現在の方法よりも、レベルサイズや表現の変化に対して堅牢であることを示す。
難易度基準は、テスト済みのドメインの1つで既存の難易度推定と相関するが、他のドメインではいくつかの課題に直面している。
論文 参考訳(メタデータ) (2022-01-25T14:13:50Z) - Pick Your Battles: Interaction Graphs as Population-Level Objectives for
Strategic Diversity [49.68758494467258]
我々は、集団内の個人がどのように相互作用するかを慎重に構造化することで、多様なエージェントの集団を構築する方法について研究する。
我々のアプローチは,エージェント間の情報の流れを制御するインタラクショングラフに基づいている。
マルチエージェント・トレーニングにおける多様性の重要性を証明し,様々な相互作用グラフを適用したゲームにおけるトレーニング・トラジェクトリ,多様性,パフォーマンスに与える影響を解析する。
論文 参考訳(メタデータ) (2021-10-08T11:29:52Z) - Policy Fusion for Adaptive and Customizable Reinforcement Learning
Agents [137.86426963572214]
異なる行動政策を結合して有意義な「融合」政策を得る方法を示す。
事前学習されたポリシーを組み合わせるための4つの異なるポリシー融合手法を提案する。
これらの手法がゲーム制作や設計に実際どのように役立つのか,実例とユースケースをいくつか紹介する。
論文 参考訳(メタデータ) (2021-04-21T16:08:44Z) - Generating Diverse and Competitive Play-Styles for Strategy Games [58.896302717975445]
ターン型戦略ゲーム(Tribes)のためのプログレッシブアンプランによるPortfolio Monte Carlo Tree Searchを提案する。
品質分散アルゴリズム(MAP-Elites)を使用して異なるプレイスタイルを実現し、競争レベルを維持しながらパラメータ化する方法を示します。
その結果,このアルゴリズムは,トレーニングに用いるレベルを超えて,幅広いゲームレベルにおいても,これらの目標を達成できることが示された。
論文 参考訳(メタデータ) (2021-04-17T20:33:24Z) - Modelling Behavioural Diversity for Learning in Open-Ended Games [15.978932309579013]
ゲームにおける行動の多様性を幾何学的に解釈する。
DPP(Emphdeterminantal point process)に基づく新しい多様性指標を提案する。
多様なベストレスポンスのユニークさと、2プレイヤーゲームにおけるアルゴリズムの収束性を証明する。
論文 参考訳(メタデータ) (2021-03-14T13:42:39Z) - Multi-Modal Aesthetic Assessment for MObile Gaming Image [30.962059154484912]
提案モデルは,4つのゲーム美的次元の予測において,最先端の審美的指標を著しく上回る。
我々の傾向は、様々な審美的関連次元間の相関を探求し、学習し、一般化性能をさらに向上させることである。
論文 参考訳(メタデータ) (2021-01-27T21:48:31Z) - On the confidence of stereo matching in a deep-learning era: a
quantitative evaluation [124.09613797008099]
ステレオマッチングにおける信頼度推定の分野における10年以上の発展を概観する。
本研究では,異なるステレオアルゴリズムのプールに適用した場合と,最先端のディープステレオネットワークと組み合わせる場合とで,各測定値の異なる挙動について検討する。
論文 参考訳(メタデータ) (2021-01-02T11:40:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。