論文の概要: DRAG: Director-Generator Language Modelling Framework for Non-Parallel
Author Stylized Rewriting
- arxiv url: http://arxiv.org/abs/2101.11836v1
- Date: Thu, 28 Jan 2021 06:52:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-01-31 18:27:09.041204
- Title: DRAG: Director-Generator Language Modelling Framework for Non-Parallel
Author Stylized Rewriting
- Title(参考訳): DRAG:非並列オーサリングのためのディレクタージェネレータ言語モデリングフレームワーク
- Authors: Hrituraj Singh, Gaurav Verma, Aparna Garimella, Balaji Vasan
Srinivasan
- Abstract要約: 書き直しは、入力テキストを特定の著者のスタイルで書き直す作業である。
著者のスタイルでコンテンツの書き直しを行うためのディレクター・ジェネレータフレームワークを提案する。
- 参考スコア(独自算出の注目度): 9.275464023441227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Author stylized rewriting is the task of rewriting an input text in a
particular author's style. Recent works in this area have leveraged
Transformer-based language models in a denoising autoencoder setup to generate
author stylized text without relying on a parallel corpus of data. However,
these approaches are limited by the lack of explicit control of target
attributes and being entirely data-driven. In this paper, we propose a
Director-Generator framework to rewrite content in the target author's style,
specifically focusing on certain target attributes. We show that our proposed
framework works well even with a limited-sized target author corpus. Our
experiments on corpora consisting of relatively small-sized text authored by
three distinct authors show significant improvements upon existing works to
rewrite input texts in target author's style. Our quantitative and qualitative
analyses further show that our model has better meaning retention and results
in more fluent generations.
- Abstract(参考訳): 著者のスタイル化された書き換えは、特定の著者のスタイルで入力テキストを書き換える作業である。
この領域の最近の研究は、Transformerベースの言語モデルを利用して、並列コーパスに頼ることなく、自動エンコーダをデノナイズして作者のスタイル化されたテキストを生成する。
しかしながら、これらのアプローチは、ターゲット属性の明示的な制御の欠如と、完全にデータ駆動であるために制限されている。
本稿では,特定のターゲット属性に着目して,ターゲット著者のスタイルでコンテンツを書き直すためのDirector-Generatorフレームワークを提案する。
提案するフレームワークは,限定サイズのターゲットコーパスでも有効であることを示す。
3人の異なる著者による比較的小さなテキストからなるコーパスの実験では,既存のテキストを対象著者のスタイルで書き直す方法が大幅に改善されている。
さらに, 定量的・質的分析により, 継続性が向上し, より流動的な世代が得られた。
関連論文リスト
- Capturing Style in Author and Document Representation [4.323709559692927]
著者と文書の埋め込みをスタイリスティックな制約で学習する新しいアーキテクチャを提案する。
本稿では,Gutenbergプロジェクトから抽出した文芸コーパス,Blog Authorship,IMDb62の3つのデータセットについて評価を行った。
論文 参考訳(メタデータ) (2024-07-18T10:01:09Z) - Navigating the Path of Writing: Outline-guided Text Generation with Large Language Models [8.920436030483872]
本稿では,Large Language Models (LLMs) をユーザ整列テキスト生成のガイドとして,明示的なアウトラインを用いたLinging Pathを提案する。
我々のアプローチは、構造化された記述計画と推論パスからインスピレーションを得て、書き込みプロセス全体を通してユーザの意図を捉え、反映することに重点を置いています。
論文 参考訳(メタデータ) (2024-04-22T06:57:43Z) - Learning to Generate Text in Arbitrary Writing Styles [6.7308816341849695]
言語モデルは、潜在的に小さな文章サンプルに基づいて、著者固有のスタイルでテキストを作成することが望ましい。
本稿では,テクスチャ的特徴を捉えた対照的に訓練された表現を用いて,ターゲットスタイルのテキストを生成するための言語モデルを提案する。
論文 参考訳(メタデータ) (2023-12-28T18:58:52Z) - Stylized Data-to-Text Generation: A Case Study in the E-Commerce Domain [53.22419717434372]
本稿では,特定のスタイルに従ってコヒーレントテキストを生成することを目的とした新しいタスク,すなわちスタイル化されたデータ・テキスト生成を提案する。
このタスクは、生成されたテキストのロジック、構造化されていないスタイル参照、バイアスのあるトレーニングサンプルという3つの課題のため、簡単ではない。
本稿では,論理計画型データ埋め込み,マスク型スタイル埋め込み,非バイアス型スタイリングテキスト生成の3つのコンポーネントからなる,新しいスタイル付きデータ・テキスト生成モデルであるStyleD2Tを提案する。
論文 参考訳(メタデータ) (2023-05-05T03:02:41Z) - PART: Pre-trained Authorship Representation Transformer [64.78260098263489]
文書を書く著者は、語彙、レジストリ、句読点、ミススペル、絵文字の使用など、テキスト内での識別情報をインプリントする。
以前の作品では、手作りのフィーチャや分類タスクを使用して著者モデルをトレーニングし、ドメイン外の著者に対するパフォーマンスの低下につながった。
セマンティクスの代わりにtextbfauthorship の埋め込みを学習するために、対照的に訓練されたモデルを提案する。
論文 参考訳(メタデータ) (2022-09-30T11:08:39Z) - StoryTrans: Non-Parallel Story Author-Style Transfer with Discourse
Representations and Content Enhancing [73.81778485157234]
長文は通常、文よりも談話構造のような複雑な著者の言語的嗜好を含んでいる。
我々は、入力されたストーリーを特定の著者スタイルに転送する必要があるノン並列ストーリー作者スタイル転送のタスクを定式化する。
モデルが自動エンコーダに退化することを防ぐために,学習した談話表現からスタイル的特徴を引き離すための追加の学習目標を用いる。
論文 参考訳(メタデータ) (2022-08-29T08:47:49Z) - Letter-level Online Writer Identification [86.13203975836556]
我々は文字レベルのオンラインライタIDという新たな問題に焦点をあてる。
主な課題は、しばしば異なるスタイルで手紙を書くことである。
我々はこの問題をオンライン書記スタイルのばらつき(Var-O-Styles)と呼ぶ。
論文 参考訳(メタデータ) (2021-12-06T07:21:53Z) - IGA : An Intent-Guided Authoring Assistant [37.98368621931934]
我々は、言語モデリングの進歩を活用して、著者仕様に従ってテキストを生成し、言い換えるインタラクティブな書き込みアシスタントを構築する。
Intent-Guided Assistant (IGA)への入力は、特定の修辞的な指示に対応するタグが散在するテキスト形式で提供される。
我々は、データセットでラベル付けされた著者意図で言語モデルを微調整し、IGAがこれらのタグに生成したテキストを埋めて、ユーザが自分の好きなように編集できるようにする。
論文 参考訳(メタデータ) (2021-04-14T17:32:21Z) - GTAE: Graph-Transformer based Auto-Encoders for Linguistic-Constrained
Text Style Transfer [119.70961704127157]
近年,非並列テキストスタイルの転送が研究の関心を集めている。
現在のアプローチでは、元の文の内容やロジックを保存できない。
文を言語グラフとしてモデル化し,グラフレベルで特徴抽出とスタイル転送を行う,グラフトランスフォーマーベースのAuto-GTAEを提案する。
論文 参考訳(メタデータ) (2021-02-01T11:08:45Z) - Text Editing by Command [82.50904226312451]
ニューラルテキスト生成における一般的なパラダイムは、単一のステップでテキストを生成するワンショット生成である。
この制限をユーザが既存のテキストを編集するコマンドを発行することでシステムと対話するインタラクティブテキスト生成設定で解決する。
このデータセットに基づいてトレーニングされたトランスフォーマーベースモデルであるInteractive Editorは,ベースラインを上回り,自動評価と人的評価の両方において肯定的な結果が得られることを示す。
論文 参考訳(メタデータ) (2020-10-24T08:00:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。