A Taxonomy of Explainable Bayesian Networks
- URL: http://arxiv.org/abs/2101.11844v1
- Date: Thu, 28 Jan 2021 07:29:57 GMT
- Title: A Taxonomy of Explainable Bayesian Networks
- Authors: Iena Petronella Derks and Alta de Waal
- Abstract summary: We introduce a taxonomy of explainability in Bayesian networks.
We extend the existing categorisation of explainability in the model, reasoning or evidence to include explanation of decisions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial Intelligence (AI), and in particular, the explainability thereof,
has gained phenomenal attention over the last few years. Whilst we usually do
not question the decision-making process of these systems in situations where
only the outcome is of interest, we do however pay close attention when these
systems are applied in areas where the decisions directly influence the lives
of humans. It is especially noisy and uncertain observations close to the
decision boundary which results in predictions which cannot necessarily be
explained that may foster mistrust among end-users. This drew attention to AI
methods for which the outcomes can be explained. Bayesian networks are
probabilistic graphical models that can be used as a tool to manage
uncertainty. The probabilistic framework of a Bayesian network allows for
explainability in the model, reasoning and evidence. The use of these methods
is mostly ad hoc and not as well organised as explainability methods in the
wider AI research field. As such, we introduce a taxonomy of explainability in
Bayesian networks. We extend the existing categorisation of explainability in
the model, reasoning or evidence to include explanation of decisions. The
explanations obtained from the explainability methods are illustrated by means
of a simple medical diagnostic scenario. The taxonomy introduced in this paper
has the potential not only to encourage end-users to efficiently communicate
outcomes obtained, but also support their understanding of how and, more
importantly, why certain predictions were made.
Related papers
- Relevant Irrelevance: Generating Alterfactual Explanations for Image Classifiers [11.200613814162185]
In this paper, we demonstrate the feasibility of alterfactual explanations for black box image classifiers.
We show for the first time that it is possible to apply this idea to black box models based on neural networks.
arXiv Detail & Related papers (2024-05-08T11:03:22Z) - Gaussian Mixture Models for Affordance Learning using Bayesian Networks [50.18477618198277]
Affordances are fundamental descriptors of relationships between actions, objects and effects.
This paper approaches the problem of an embodied agent exploring the world and learning these affordances autonomously from its sensory experiences.
arXiv Detail & Related papers (2024-02-08T22:05:45Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
We evaluate whether explanations can improve human decision-making in practical scenarios of machine learning model development.
To our surprise, we did not find evidence of significant improvement on tasks when users were provided with any of the saliency maps.
These findings suggest caution regarding the usefulness and potential for misunderstanding in saliency-based explanations.
arXiv Detail & Related papers (2023-12-10T23:13:23Z) - How Well Do Feature-Additive Explainers Explain Feature-Additive
Predictors? [12.993027779814478]
We ask the question: can popular feature-additive explainers (e.g., LIME, SHAP, SHAPR, MAPLE, and PDP) explain feature-additive predictors?
Herein, we evaluate such explainers on ground truth that is analytically derived from the additive structure of a model.
Our results suggest that all explainers eventually fail to correctly attribute the importance of features, especially when a decision-making process involves feature interactions.
arXiv Detail & Related papers (2023-10-27T21:16:28Z) - Human Trajectory Forecasting with Explainable Behavioral Uncertainty [63.62824628085961]
Human trajectory forecasting helps to understand and predict human behaviors, enabling applications from social robots to self-driving cars.
Model-free methods offer superior prediction accuracy but lack explainability, while model-based methods provide explainability but cannot predict well.
We show that BNSP-SFM achieves up to a 50% improvement in prediction accuracy, compared with 11 state-of-the-art methods.
arXiv Detail & Related papers (2023-07-04T16:45:21Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - Explanatory Paradigms in Neural Networks [18.32369721322249]
We present a leap-forward expansion to the study of explainability in neural networks by considering explanations as answers to reasoning-based questions.
The answers to these questions are observed correlations, observed counterfactuals, and observed contrastive explanations respectively.
The term observed refers to the specific case of post-hoc explainability, when an explanatory technique explains the decision $P$ after a trained neural network has made the decision $P$.
arXiv Detail & Related papers (2022-02-24T00:22:11Z) - A Bayesian Framework for Information-Theoretic Probing [51.98576673620385]
We argue that probing should be seen as approximating a mutual information.
This led to the rather unintuitive conclusion that representations encode exactly the same information about a target task as the original sentences.
This paper proposes a new framework to measure what we term Bayesian mutual information.
arXiv Detail & Related papers (2021-09-08T18:08:36Z) - How Much Can I Trust You? -- Quantifying Uncertainties in Explaining
Neural Networks [19.648814035399013]
Explainable AI (XAI) aims to provide interpretations for predictions made by learning machines, such as deep neural networks.
We propose a new framework that allows to convert any arbitrary explanation method for neural networks into an explanation method for Bayesian neural networks.
We demonstrate the effectiveness and usefulness of our approach extensively in various experiments.
arXiv Detail & Related papers (2020-06-16T08:54:42Z) - An Incremental Explanation of Inference in Hybrid Bayesian Networks for
Increasing Model Trustworthiness and Supporting Clinical Decision Making [0.0]
Clinicians are more likely to use a model if they can understand and trust its predictions.
A Bayesian network (BN) model has the advantage that it is not a black-box and its reasoning can be explained.
We propose an incremental explanation of inference that can be applied to hybrid BNs.
arXiv Detail & Related papers (2020-03-05T13:22:23Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.