論文の概要: Autoregressive Denoising Diffusion Models for Multivariate Probabilistic
Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2101.12072v1
- Date: Thu, 28 Jan 2021 15:46:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-01-31 21:55:27.447917
- Title: Autoregressive Denoising Diffusion Models for Multivariate Probabilistic
Time Series Forecasting
- Title(参考訳): 多変量確率時系列予測のための自己回帰消音拡散モデル
- Authors: Kashif Rasul, Calvin Seward, Ingmar Schuster, Roland Vollgraf
- Abstract要約: 拡散確率モデル(拡散確率モデル)は、スコアマッチングやエネルギーベースの手法と密接に結びついている潜在変数モデルのクラスである。
我々のモデルは、データ可能性の変動境界を最適化して勾配を学習し、推論時にホワイトノイズを関心の分布のサンプルに変換する。
- 参考スコア(独自算出の注目度): 4.1573460459258245
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we propose \texttt{TimeGrad}, an autoregressive model for
multivariate probabilistic time series forecasting which samples from the data
distribution at each time step by estimating its gradient. To this end, we use
diffusion probabilistic models, a class of latent variable models closely
connected to score matching and energy-based methods. Our model learns
gradients by optimizing a variational bound on the data likelihood and at
inference time converts white noise into a sample of the distribution of
interest through a Markov chain using Langevin sampling. We demonstrate
experimentally that the proposed autoregressive denoising diffusion model is
the new state-of-the-art multivariate probabilistic forecasting method on
real-world data sets with thousands of correlated dimensions. We hope that this
method is a useful tool for practitioners and lays the foundation for future
research in this area.
- Abstract(参考訳): 本研究では,その勾配を推定し,各タイミングにおけるデータ分布からのサンプルを多変量確率時系列予測のための自己回帰モデルである「texttt{TimeGrad}」を提案する。
この目的のために,スコアマッチングやエネルギーベース手法と密接な関係を持つ潜在変数モデルのクラスである拡散確率モデルを用いる。
モデルでは,データ可能性の変動境界を最適化して勾配を学習し,推定時に白色雑音をLangevinサンプリングを用いてマルコフ連鎖を介して興味の分布のサンプルに変換する。
提案手法は,数千の相関次元を持つ実世界のデータセット上での,最先端の多変量確率予測手法であることを示す。
我々は,本手法が実践者にとって有用なツールであり,今後の研究の基盤となることを願っている。
関連論文リスト
- A Simple Early Exiting Framework for Accelerated Sampling in Diffusion Models [14.859580045688487]
拡散モデルの現実的なボトルネックはサンプリング速度である。
スコア推定に必要な計算を適応的に割り当てる新しいフレームワークを提案する。
本研究では,画像品質を損なうことなく,拡散モデルのサンプリングスループットを大幅に向上できることを示す。
論文 参考訳(メタデータ) (2024-08-12T05:33:45Z) - Stochastic Diffusion: A Diffusion Probabilistic Model for Stochastic Time Series Forecasting [8.232475807691255]
本稿では,データ駆動型事前知識を各ステップで学習する新しい拡散(StochDiff)モデルを提案する。
学習された事前知識は、複雑な時間的ダイナミクスとデータ固有の不確実性を捉えるのに役立つ。
論文 参考訳(メタデータ) (2024-06-05T00:13:38Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - Bi-Noising Diffusion: Towards Conditional Diffusion Models with
Generative Restoration Priors [64.24948495708337]
本研究では,事前訓練した非条件拡散モデルを用いて,予測サンプルをトレーニングデータ多様体に導入する手法を提案する。
我々は,超解像,着色,乱流除去,画像劣化作業におけるアプローチの有効性を実証するための総合的な実験を行った。
論文 参考訳(メタデータ) (2022-12-14T17:26:35Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - Modeling Temporal Data as Continuous Functions with Stochastic Process
Diffusion [2.2849153854336763]
時間データは、基礎となる関数の離散化測定と見なすことができる。
このようなデータの生成モデルを構築するには、そのデータを管理するプロセスをモデル化する必要があります。
本稿では,関数空間における微分拡散モデルを定義することで解を提案する。
論文 参考訳(メタデータ) (2022-11-04T17:02:01Z) - Wasserstein multivariate auto-regressive models for modeling distributional time series [0.0]
多変量分布時系列の統計解析のための新しい自己回帰モデルを提案する。
このようなモデルの解の存在、特異性、定常性に関する結果が提供される。
また,本手法を各国の年齢分布から得られたデータ集合に適用した。
論文 参考訳(メタデータ) (2022-07-12T10:18:36Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Oops I Took A Gradient: Scalable Sampling for Discrete Distributions [53.3142984019796]
このアプローチは、多くの困難な設定において、ジェネリックサンプリングよりも優れていることを示す。
また,高次元離散データを用いた深部エネルギーモデルトレーニングのための改良型サンプリング器についても実演した。
論文 参考訳(メタデータ) (2021-02-08T20:08:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。