Potential Function-based Framework for Making the Gradients Small in
Convex and Min-Max Optimization
- URL: http://arxiv.org/abs/2101.12101v1
- Date: Thu, 28 Jan 2021 16:41:00 GMT
- Title: Potential Function-based Framework for Making the Gradients Small in
Convex and Min-Max Optimization
- Authors: Jelena Diakonikolas and Puqian Wang
- Abstract summary: Making the gradients small is a fundamental optimization problem that has eluded unifying and simple convergence arguments.
We introduce a novel potential function-based framework to study the convergence of standard methods for making the gradients small.
- Score: 14.848525762485872
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Making the gradients small is a fundamental optimization problem that has
eluded unifying and simple convergence arguments in first-order optimization,
so far primarily reserved for other convergence criteria, such as reducing the
optimality gap. We introduce a novel potential function-based framework to
study the convergence of standard methods for making the gradients small in
smooth convex optimization and convex-concave min-max optimization. Our
framework is intuitive and it provides a lens for viewing algorithms that make
the gradients small as being driven by a trade-off between reducing either the
gradient norm or a certain notion of an optimality gap. On the lower bounds
side, we discuss tightness of the obtained convergence results for the convex
setup and provide a new lower bound for minimizing norm of cocoercive operators
that allows us to argue about optimality of methods in the min-max setup.
Related papers
- Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
We consider the problem of optimizing second-order smooth and strongly convex functions where the algorithm is only accessible to noisy evaluations of the objective function it queries.
We provide the first tight characterization for the rate of the minimax simple regret by developing matching upper and lower bounds.
arXiv Detail & Related papers (2024-06-28T02:56:22Z) - Low-Rank Extragradient Methods for Scalable Semidefinite Optimization [0.0]
We focus on high-dimensional and plausible settings in which the problem admits a low-rank solution.
We provide several theoretical results proving that, under these circumstances, the well-known Extragradient method converges to a solution of the constrained optimization problem.
arXiv Detail & Related papers (2024-02-14T10:48:00Z) - Optimal Guarantees for Algorithmic Reproducibility and Gradient
Complexity in Convex Optimization [55.115992622028685]
Previous work suggests that first-order methods would need to trade-off convergence rate (gradient convergence rate) for better.
We demonstrate that both optimal complexity and near-optimal convergence guarantees can be achieved for smooth convex minimization and smooth convex-concave minimax problems.
arXiv Detail & Related papers (2023-10-26T19:56:52Z) - Nesterov Meets Optimism: Rate-Optimal Separable Minimax Optimization [108.35402316802765]
We propose a new first-order optimization algorithm -- AcceleratedGradient-OptimisticGradient (AG-OG) Ascent.
We show that AG-OG achieves the optimal convergence rate (up to a constant) for a variety of settings.
We extend our algorithm to extend the setting and achieve the optimal convergence rate in both bi-SC-SC and bi-C-SC settings.
arXiv Detail & Related papers (2022-10-31T17:59:29Z) - Near-Optimal Algorithms for Making the Gradient Small in Stochastic
Minimax Optimization [14.719077076351377]
We study the problem of finding a near-stationary point for smooth minimax optimization.
We show that a novel algorithm called Recursive IteratioNRAIN achieves both convex-concave and strongly-concave cases.
arXiv Detail & Related papers (2022-08-11T16:55:26Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - Efficient Methods for Structured Nonconvex-Nonconcave Min-Max
Optimization [98.0595480384208]
We propose a generalization extraient spaces which converges to a stationary point.
The algorithm applies not only to general $p$-normed spaces, but also to general $p$-dimensional vector spaces.
arXiv Detail & Related papers (2020-10-31T21:35:42Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Stochastic Coordinate Minimization with Progressive Precision for
Stochastic Convex Optimization [16.0251555430107]
A framework based on iterative coordinate minimization (CM) is developed for convex optimization.
We establish the optimal precision control and the resulting order-optimal regret performance.
The proposed algorithm is amenable to online implementation and inherits the scalability and parallelizability properties of CM for large-scale optimization.
arXiv Detail & Related papers (2020-03-11T18:42:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.