An Experimental Analysis of Attack Classification Using Machine Learning
in IoT Networks
- URL: http://arxiv.org/abs/2101.12270v1
- Date: Sun, 10 Jan 2021 11:48:37 GMT
- Title: An Experimental Analysis of Attack Classification Using Machine Learning
in IoT Networks
- Authors: Andrew Churcher, Rehmat Ullah, Jawad Ahmad, Sadaqat ur Rehman, Fawad
Masood, Mandar Gogate, Fehaid Alqahtani, Boubakr Nour and William J. Buchanan
- Abstract summary: In recent years, there has been a massive increase in the amount of Internet of Things (IoT) devices as well as the data generated by such devices.
As the number of attacks possible on a network increases, it becomes more difficult for traditional intrusion detection systems to cope with these attacks efficiently.
In this paper, we highlight several machine learning (ML) methods such as k-nearest neighbour (KNN), support vector machine (SVM), decision tree (DT), naive Bayes (NB), random forest (RF), artificial neural network (ANN), and logistic regression (LR) that can be used in IDS
- Score: 3.9236397589917127
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, there has been a massive increase in the amount of Internet
of Things (IoT) devices as well as the data generated by such devices. The
participating devices in IoT networks can be problematic due to their
resource-constrained nature, and integrating security on these devices is often
overlooked. This has resulted in attackers having an increased incentive to
target IoT devices. As the number of attacks possible on a network increases,
it becomes more difficult for traditional intrusion detection systems (IDS) to
cope with these attacks efficiently. In this paper, we highlight several
machine learning (ML) methods such as k-nearest neighbour (KNN), support vector
machine (SVM), decision tree (DT), naive Bayes (NB), random forest (RF),
artificial neural network (ANN), and logistic regression (LR) that can be used
in IDS. In this work, ML algorithms are compared for both binary and
multi-class classification on Bot-IoT dataset. Based on several parameters such
as accuracy, precision, recall, F1 score, and log loss, we experimentally
compared the aforementioned ML algorithms. In the case of HTTP distributed
denial-of-service (DDoS) attack, the accuracy of RF is 99%. Furthermore, other
simulation results-based precision, recall, F1 score, and log loss metric
reveal that RF outperforms on all types of attacks in binary classification.
However, in multi-class classification, KNN outperforms other ML algorithms
with an accuracy of 99%, which is 4% higher than RF.
Related papers
- FedMADE: Robust Federated Learning for Intrusion Detection in IoT Networks Using a Dynamic Aggregation Method [7.842334649864372]
Internet of Things (IoT) devices across multiple sectors has escalated serious network security concerns.
Traditional Machine Learning (ML)-based Intrusion Detection Systems (IDSs) for cyber-attack classification require data transmission from IoT devices to a centralized server for traffic analysis, raising severe privacy concerns.
We introduce FedMADE, a novel dynamic aggregation method, which clusters devices by their traffic patterns and aggregates local models based on their contributions towards overall performance.
arXiv Detail & Related papers (2024-08-13T18:42:34Z) - Performance evaluation of Machine learning algorithms for Intrusion Detection System [0.40964539027092917]
This paper focuses on intrusion detection systems (IDSs) analysis using Machine Learning (ML) techniques.
We analyze the KDD CUP-'99' intrusion detection dataset used for training and validating ML models.
arXiv Detail & Related papers (2023-10-01T06:35:37Z) - Intrusion Detection in Internet of Things using Convolutional Neural
Networks [4.718295605140562]
We propose a novel solution to the intrusion attacks against IoT devices using CNNs.
The data is encoded as the convolutional operations to capture the patterns from the sensors data along time.
The experimental results show significant improvement in both true positive rate and false positive rate compared to the baseline using LSTM.
arXiv Detail & Related papers (2022-11-18T07:27:07Z) - NetSentry: A Deep Learning Approach to Detecting Incipient Large-scale
Network Attacks [9.194664029847019]
We show how to use Machine Learning for Network Intrusion Detection (NID) in a principled way.
We propose NetSentry, perhaps the first of its kind NIDS that builds on Bi-ALSTM, an original ensemble of sequential neural models.
We demonstrate F1 score gains above 33% over the state-of-the-art, as well as up to 3 times higher rates of detecting attacks such as XSS and web bruteforce.
arXiv Detail & Related papers (2022-02-20T17:41:02Z) - A Comparative Analysis of Machine Learning Algorithms for Intrusion
Detection in Edge-Enabled IoT Networks [0.0]
Intrusion detection is one of the challenging issues in the area of network security.
In this paper, a comparative analysis of conventional machine learning classification algorithms has been performed.
It can be observed that Multi-Layer Perception (MLP) has dependencies between input and output and relies more on network configuration for intrusion detection.
arXiv Detail & Related papers (2021-11-02T05:58:07Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Quantized Neural Networks via {-1, +1} Encoding Decomposition and
Acceleration [83.84684675841167]
We propose a novel encoding scheme using -1, +1 to decompose quantized neural networks (QNNs) into multi-branch binary networks.
We validate the effectiveness of our method on large-scale image classification, object detection, and semantic segmentation tasks.
arXiv Detail & Related papers (2021-06-18T03:11:15Z) - Adversarial Attacks on Deep Learning Based Power Allocation in a Massive
MIMO Network [62.77129284830945]
We show that adversarial attacks can break DL-based power allocation in the downlink of a massive multiple-input-multiple-output (maMIMO) network.
We benchmark the performance of these attacks and show that with a small perturbation in the input of the neural network (NN), the white-box attacks can result in infeasible solutions up to 86%.
arXiv Detail & Related papers (2021-01-28T16:18:19Z) - Enabling certification of verification-agnostic networks via
memory-efficient semidefinite programming [97.40955121478716]
We propose a first-order dual SDP algorithm that requires memory only linear in the total number of network activations.
We significantly improve L-inf verified robust accuracy from 1% to 88% and 6% to 40% respectively.
We also demonstrate tight verification of a quadratic stability specification for the decoder of a variational autoencoder.
arXiv Detail & Related papers (2020-10-22T12:32:29Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.