Hyperpolarisation of external nuclear spins using nitrogen-vacancy
centre ensembles
- URL: http://arxiv.org/abs/2101.12325v1
- Date: Fri, 29 Jan 2021 00:02:40 GMT
- Title: Hyperpolarisation of external nuclear spins using nitrogen-vacancy
centre ensembles
- Authors: A. J. Healey, L. T. Hall, G. A. L. White, T. Teraji, M.-A. Sani, F.
Separovic, J.-P. Tetienne, L. C. L. Hollenberg
- Abstract summary: We present evidence for a polarising interaction between a shallow NV ensemble and external nuclear targets over a micrometre scale.
We find that our results suggest implementation of this technique for NMR sensitivity enhancement is feasible following realistic diamond material improvements.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The nitrogen-vacancy (NV) centre in diamond has emerged as a candidate to
non-invasively hyperpolarise nuclear spins in molecular systems to improve the
sensitivity of nuclear magnetic resonance (NMR) experiments. Several promising
proof of principle experiments have demonstrated small-scale polarisation
transfer from single NVs to hydrogen spins outside the diamond. However, the
scaling up of these results to the use of a dense NV ensemble, which is a
necessary prerequisite for achieving realistic NMR sensitivity enhancement, has
not yet been demonstrated. In this work, we present evidence for a polarising
interaction between a shallow NV ensemble and external nuclear targets over a
micrometre scale, and characterise the challenges in achieving useful
polarisation enhancement. In the most favourable example of the interaction
with hydrogen in a solid state target, a maximum polarisation transfer rate of
$\approx 7500$ spins per second per NV is measured, averaged over an area
containing order $10^6$ NVs. Reduced levels of polarisation efficiency are
found for liquid state targets, where molecular diffusion limits the transfer.
Through analysis via a theoretical model, we find that our results suggest
implementation of this technique for NMR sensitivity enhancement is feasible
following realistic diamond material improvements.
Related papers
- Enhancing polarization transfer from nitrogen-vacancy centers in diamond
to external nuclear spins via dangling bond mediators [0.0]
The use of nitrogen-vacancy centers in diamond as a non-invasive platform for hyperpolarizing nuclear spins in molecular samples is a promising area of research.
We present a method that benefits from existing microwave sequences, namely the PulsePol, to transfer polarization efficiently and robustly using dangling bonds or other localized electronic spins.
arXiv Detail & Related papers (2023-04-27T15:43:06Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - High-Pressure NMR Enabled by Diamond Nitrogen-Vacancy Centers [8.916349941787994]
We introduce diamond nitrogen-vacancy (NV) centers as the source and probe of in-situ nuclear spin polarization.
We demonstrate hyperpolarization and coherent control of $14$N nuclear spins under high pressures.
arXiv Detail & Related papers (2022-03-20T10:00:14Z) - Developing a Chemical and Structural Understanding of the Surface Oxide
in a Niobium Superconducting Qubit [46.6940373636939]
We conduct a detailed assessment of the surface oxide that forms in ambient conditions for transmon test devices patterned from a niobium film.
In terms of structural analysis, we find that the Nb$ 1-2$O$_5$ region is semicrystalline in nature.
We observe that amorphous regions are more likely to contain oxygen vacancies and exhibit weaker bonds between the niobium and oxygen atoms.
arXiv Detail & Related papers (2022-03-16T16:00:57Z) - Single Nitrogen-Vacancy-NMR of Amine-Functionalized Diamond Surfaces [0.5437050212139087]
Nuclear magnetic resonance (NMR) imaging with shallow nitrogen-vacancy (NV) centers in diamond offers an exciting route toward sensitive and localized chemical characterization at the nanoscale.
We demonstrate a diamond surface preparation for mixed nitrogen- and oxygen-termination that simultaneously improves NV center coherence times for emitters 10-nm-deep.
arXiv Detail & Related papers (2022-02-08T16:17:22Z) - Rapidly enhanced spin polarization injection in an optically pumped spin
ratchet [49.1301457567913]
We report on a strategy to boost the spin injection rate by exploiting electrons that can be rapidly polarized.
We demonstrate this in a model system of Nitrogen Vacancy center electrons injecting polarization into a bath of 13C nuclei in diamond.
Through a spin-ratchet polarization transfer mechanism, we show boosts in spin injection rates by over two orders of magnitude.
arXiv Detail & Related papers (2021-12-14T08:23:10Z) - Low temperature photo-physics of single NV centers in diamond [43.55994393060723]
We investigate the magnetic field dependent photo-physics of Nitrogen-Vacancy (NV) color centers in diamond under cryogenic conditions.
We observe significant reductions in the NV photoluminescence rate, which indicate a marked decrease in the optical readout efficiency of the NV's ground state spin.
Our results offer new insights into the structure of the NVs' excited states and a new tool for their effective characterization.
arXiv Detail & Related papers (2021-05-17T18:00:02Z) - Optimal control of a nitrogen-vacancy spin ensemble in diamond for
sensing in the pulsed domain [52.77024349608834]
Defects in solid state materials provide an ideal platform for quantum sensing.
Control of such an ensemble is challenging due to the spatial variation in both the defect energy levels and in any control field across a macroscopic sample.
We experimentally demonstrate that we can overcome these challenges using Floquet theory and optimal control optimization methods.
arXiv Detail & Related papers (2021-01-25T13:01:05Z) - Laser threshold magnetometry using green light absorption by diamond
nitrogen vacancies in an external cavity laser [52.77024349608834]
Nitrogen vacancy (NV) centers in diamond have attracted considerable recent interest for use in quantum sensing.
We show theoretical sensitivity to magnetic field on the pT/sqrt(Hz) level is possible using a diamond with an optimal density of NV centers.
arXiv Detail & Related papers (2021-01-22T18:58:05Z) - Maximising Dynamic Nuclear Polarisation via Selective Hyperfine Tuning [0.0]
We show that for systems of electronic spin $Sgeq1$ possessing an intrinsic zero-field splitting, a separate class of stronger hyperfine interactions may be utilised to improve DNP efficiency and yield.
We analytically review existing methods, and determine that this approach increases the rate of polarisation transfer to the nuclear ensemble by up to an order of magnitude over existing techniques.
arXiv Detail & Related papers (2020-12-23T06:19:15Z) - Resolving single molecule structures with nitrogen-vacancy centers in diamond [0.8192907805418583]
We present theoretical proposals for two-dimensional nuclear magnetic resonance spectroscopy protocols based on Nitrogen-vacancy (NV) centers in diamond.
We employ a singular value thresholding matrix completion algorithm to further reduce the amount of data required to permit the identification of key features in the spectra of strongly sub-sampled data.
arXiv Detail & Related papers (2014-07-23T15:27:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.