High-Pressure NMR Enabled by Diamond Nitrogen-Vacancy Centers
- URL: http://arxiv.org/abs/2203.10511v1
- Date: Sun, 20 Mar 2022 10:00:14 GMT
- Title: High-Pressure NMR Enabled by Diamond Nitrogen-Vacancy Centers
- Authors: Yan-Xing Shang, Fang Hong, Jian-Hong Dai, Ya-Nan Lu, Hui Yu, Yong-Hong
Yu, Xiao-Hui Yu, Xin-Yu Pan, and Gang-Qin Liu
- Abstract summary: We introduce diamond nitrogen-vacancy (NV) centers as the source and probe of in-situ nuclear spin polarization.
We demonstrate hyperpolarization and coherent control of $14$N nuclear spins under high pressures.
- Score: 8.916349941787994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of NMR and high pressure technique brings unique
opportunities to study electronic, structural and dynamical properties under
extreme conditions. Despite a great degree of success has been achieved using
coil-based schemes, the contradictory requirement on sample volume of these two
techniques remains an outstanding challenge. In this letter, we introduce
diamond nitrogen-vacancy (NV) centers, as the source and probe of in-situ
nuclear spin polarization, to address the sample volume issue. We demonstrate
hyperpolarization and coherent control of $^{14}$N nuclear spins under high
pressures. NMR spectra of a micro-diamond are measured up to 16.6 GPa, and
unexpected pressure shift of the $^{14}$N nuclear quadrupole and hyperfine
coupling terms are observed. Our work contributes to quantum sensing enhanced
spectrometry under extreme conditions.
Related papers
- J-coupling NMR Spectroscopy with Nitrogen Vacancy Centers at High Fields [0.0]
We present a protocol to access J-couplings in both homonuclear and heteronuclear cases with NV centers at high magnetic fields.
Our protocol leads to a clear spectrum exclusively containing J-coupling features with high resolution.
arXiv Detail & Related papers (2023-11-20T16:15:41Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Ultra-High Q Nanomechanical Resonators for Force Sensing [91.3755431537592]
I propose that such resonators will allow the detection of electron and nuclear spins with high spatial resolution.
The article lists the challenges that must be overcome before this vision can become reality, and indicates potential solutions.
arXiv Detail & Related papers (2022-09-12T12:21:00Z) - Quantum Heterodyne Sensing of Nuclear Spins via Double Resonance [0.0]
A heterodyne approach is widely used to overcome the electron spin lifetime limit in spectral resolution.
This work paves the way towards high field nanoscale heterodyne NMR protocols with NV centres.
arXiv Detail & Related papers (2022-05-20T13:48:59Z) - Nanoscale Solid-State Nuclear Quadrupole Resonance Spectroscopy using
Depth-Optimized Nitrogen-Vacancy Ensembles in Diamond [9.322875230001717]
Nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) spectroscopy of bulk quantum materials have provided insight into phenomena such as quantum phase criticality, magnetism, and superconductivity.
With the emergence of nanoscale 2-D materials with magnetic phenomena, inductively-detected NMR and NQR spectroscopy are not sensitive enough to detect the smaller number of spins in nanomaterials.
The nitrogen-vacancy (NV) center in diamond has shown promise in bringing the analytic power of NMR and NQR spectroscopy to the nanoscale.
arXiv Detail & Related papers (2021-12-29T22:19:17Z) - Nearly-Resonant Crystalline-Phononic Coupling in Quantum Spin Liquid
Candidate CsYbSe$_2$ [48.30279211143264]
CsYbSe$$, a recently identified quantum spin liquid (QSL) candidate, exhibits strong crystal electric field excitations.
We identify phonon and CEF modes with Raman spectroscopy and observe strong CEF-phonon mixing resulting in a vibronic bound state.
arXiv Detail & Related papers (2021-11-06T17:00:34Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Hyperpolarisation of external nuclear spins using nitrogen-vacancy
centre ensembles [0.0]
We present evidence for a polarising interaction between a shallow NV ensemble and external nuclear targets over a micrometre scale.
We find that our results suggest implementation of this technique for NMR sensitivity enhancement is feasible following realistic diamond material improvements.
arXiv Detail & Related papers (2021-01-29T00:02:40Z) - Deterministic single-atom source of quasi-superradiant $N$-photon pulses [62.997667081978825]
Scheme operates with laser and cavity fields detuned from the atomic transition by much more than the excited-state hyperfine splitting.
This enables reduction of the dynamics to that of a simple, cavity-damped Tavis-Cummings model with the collective spin determined by the total angular momentum of the ground hyperfine level.
arXiv Detail & Related papers (2020-12-01T03:55:27Z) - Entanglement and control of single quantum memories in isotopically
engineered silicon carbide [89.42372489576658]
Nuclear spins in the solid state are both a cause of decoherence and a valuable resource for spin qubits.
We demonstrate control of isolated 29Si nuclear spins in silicon carbide (SiC) to create an entangled state between an optically active divacancy spin and a strongly coupled nuclear register.
arXiv Detail & Related papers (2020-05-15T15:45:34Z) - Resolving single molecule structures with nitrogen-vacancy centers in diamond [0.8192907805418583]
We present theoretical proposals for two-dimensional nuclear magnetic resonance spectroscopy protocols based on Nitrogen-vacancy (NV) centers in diamond.
We employ a singular value thresholding matrix completion algorithm to further reduce the amount of data required to permit the identification of key features in the spectra of strongly sub-sampled data.
arXiv Detail & Related papers (2014-07-23T15:27:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.