Multiple ground-state instabilities in the anisotropic quantum Rabi
model
- URL: http://arxiv.org/abs/2101.12396v2
- Date: Sun, 11 Apr 2021 10:50:14 GMT
- Title: Multiple ground-state instabilities in the anisotropic quantum Rabi
model
- Authors: Xiang-You Chen, Liwei Duan, Daniel Braak, and Qing-Hu Chen
- Abstract summary: We study the anisotropic variant of the quantum Rabi model with different coupling strengths of the rotating and counter-rotating wave terms.
The anisotropy preserves the parity symmetry of the original model.
We find analytically that the ground-state and the first excited state can cross several times.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, the anisotropic variant of the quantum Rabi model with
different coupling strengths of the rotating and counter-rotating wave terms is
studied by the Bogoliubov operator approach. The anisotropy preserves the
parity symmetry of the original model. We derive the corresponding
$G$-function, which yields both the regular and exceptional eigenvalues. The
exceptional eigenvalues correspond to the crossing points of two energy levels
with different parities and are doubly degenerate. We find analytically that
the ground-state and the first excited state can cross several times,
indicating multiple first-order phase transitions as function of the coupling
strength. These crossing points are related to manifest parity symmetry of the
Hamiltonian, in contrast to the level crossings in the asymmetric quantum Rabi
model which are caused by a hidden symmetry.
Related papers
- Dark-state solution and symmetries of the two-qubit multimode asymmetric quantum Rabi model [6.510240597572375]
We study the two-qubit asymmetric quantum Rabi model (AQRM) and find its dark-state solution.
We find symmetries related with conserved bosonic number operators, which also cause level crossings.
arXiv Detail & Related papers (2023-10-31T22:33:28Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Out-of-equilibrium dynamics of the Kitaev model on the Bethe lattice via
coupled Heisenberg equations [23.87373187143897]
We study the isotropic Kitaev spin-$1/2$ model on the Bethe lattice.
We take a straightforward approach of solving Heisenberg equations for a tailored subset of spin operators.
As an example, we calculate the time-dependent expectation value of this observable for a factorized translation-invariant.
arXiv Detail & Related papers (2021-10-25T17:37:33Z) - Information retrieval and eigenstates coalescence in a non-Hermitian
quantum system with anti-$\mathcal{PT}$ symmetry [15.273168396747495]
Non-Hermitian systems with parity-time reversal ($mathcalPT$) or anti-$mathcalPT$ symmetry have attracted a wide range of interest owing to their unique characteristics and counterintuitive phenomena.
We implement a Floquet Hamiltonian of a single qubit with anti-$mathcalPT$ symmetry by periodically driving a dissipative quantum system of a single trapped ion.
arXiv Detail & Related papers (2021-07-27T07:11:32Z) - Constant of motion identifying excited-state quantum phases [0.0]
A broad class of excited-state quantum phase transitions (ESQPTs) gives rise to two different excited-state quantum phases.
These phases are identified by means of an operator, $hatmathcalC$, which is a constant of motion only in one of them.
We present stringent numerical evidence in the Rabi and Dicke models, suggesting that this result is exact in the thermodynamic limit.
arXiv Detail & Related papers (2021-03-19T12:17:36Z) - The hidden symmetry of the asymmetric quantum Rabi model [0.0]
The asymmetric quantum Rabi model (AQRM) exhibits level crossings in the eigenspectrum for the values $epsiloninfrac12mathbbZ$ of the bias parameter $epsilon$.
These level crossings are expected to be associated with some hidden symmetry of the model.
arXiv Detail & Related papers (2020-10-06T05:57:35Z) - The quantum phase transitions of dimer chain driven by an imaginary ac
field [0.0]
A topologically equivalent tight binding model is proposed to study the quantum phase transitions of dimer chain driven by an imaginary ac field.
The approach has the potential applications to investigate the topological states of matter driven by the complex external parameters.
arXiv Detail & Related papers (2020-09-08T09:07:45Z) - Quantum catastrophes from an algebraic perspective [0.0]
We study the properties of quantum cusp and butterfly catastrophes from an algebraic viewpoint.
The classical properties are determined by using coherent states to construct the complete phase diagrams associated with Landau potentials exhibiting such catastrophes.
arXiv Detail & Related papers (2020-08-31T16:33:34Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.