Constant of motion identifying excited-state quantum phases
- URL: http://arxiv.org/abs/2103.10762v2
- Date: Sun, 5 Sep 2021 21:08:24 GMT
- Title: Constant of motion identifying excited-state quantum phases
- Authors: \'Angel L. Corps, Armando Rela\~no
- Abstract summary: A broad class of excited-state quantum phase transitions (ESQPTs) gives rise to two different excited-state quantum phases.
These phases are identified by means of an operator, $hatmathcalC$, which is a constant of motion only in one of them.
We present stringent numerical evidence in the Rabi and Dicke models, suggesting that this result is exact in the thermodynamic limit.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose that a broad class of excited-state quantum phase transitions
(ESQPTs) gives rise to two different excited-state quantum phases. These phases
are identified by means of an operator, $\hat{\mathcal{C}}$, which is a
constant of motion only in one of them. Hence, the ESQPT critical energy splits
the spectrum into one phase where the equilibirium expectation values of
physical observables crucially depend on this constant of motion, and another
phase where the energy is the only relevant thermodynamic magnitude. The
trademark feature of this operator is that it has two different eigenvalues,
$\pm1$, and therefore it acts as a discrete symmetry in the first of these two
phases. This scenario is observed in systems with and without an additional
discrete symmetry; in the first case, $\hat{\mathcal{C}}$ explains the change
from degenerate doublets to non-degenerate eigenlevels upon crossing the
critical line. We present stringent numerical evidence in the Rabi and Dicke
models, suggesting that this result is exact in the thermodynamic limit, with
finite-size corrections that decrease as a power-law.
Related papers
- SUSY Quantum Mechanics, (non)-Analyticity and $\ldots$ Phase Transitions [55.2480439325792]
It is shown by analyzing the $1D$ Schr"odinger equation the discontinuities in the coupling constant can occur in both the energies and the eigenfunctions.
arXiv Detail & Related papers (2024-09-04T21:10:36Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Entanglement phase transition due to reciprocity breaking without
measurement or post-selection [59.63862802533879]
EPT occurs for a system undergoing purely unitary evolution.
We analytically derive the entanglement entropy out of and at the critical point for the $l=1$ and $l/N ll 1$ case.
arXiv Detail & Related papers (2023-08-28T14:28:59Z) - Charge and Entanglement Criticality in a U(1)-Symmetric Hybrid Circuit of Qubits [1.5993457689710513]
We study critical properties of the entanglement and charge-sharpening measurement-induced phase transitions in a quantum circuit.
Our numerical estimation of the critical properties of the entanglement transition at finite system sizes appears distinct from the generic non-conserving case.
arXiv Detail & Related papers (2023-07-24T18:00:04Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Energy cat states induced by a parity-breaking excited-state quantum
phase transition [0.0]
We show that excited-state quantum phase transitions (ESQPTs) in a system in which the parity symmetry is broken can be used to engineer an energy-cat state.
arXiv Detail & Related papers (2022-01-11T14:38:57Z) - Quantum quench thermodynamics at high temperatures [0.0]
entropy produced when a system undergoes an infinitesimal quench is directly linked to the work parameter susceptibility, making it sensitive to the existence of a quantum critical point.
We show that these individual contributions continue to exhibit signatures of the quantum phase transition, even at arbitrarily high temperatures.
arXiv Detail & Related papers (2021-09-08T15:20:50Z) - Anharmonicity-induced excited-state quantum phase transition in the
symmetric phase of the two-dimensional limit of the vibron model [0.0]
An excited-state quantum phase transition might also stem from the lowering of the energy of the corresponding energy functional.
One such example occurs in the 2D limit of the vibron model, once an anharmonic term in the form of a bosonic number operator is added to the Hamiltonian.
In the present work, we characterize it in the symmetric, previously overlooked phase of the model making use of quantities such as the effective frequency, the expected value of the quantum number operator, the participation ratio, the density of states, and the quantum fidelity susceptibility.
arXiv Detail & Related papers (2021-06-21T12:31:17Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Finite-component dynamical quantum phase transitions [0.0]
We show two types of dynamical quantum phase transitions (DQPTs) in a quantum Rabi model.
One refers to distinct phases according to long-time averaged order parameters, the other is focused on the non-analytical behavior emerging in the rate function of the Loschmidt echo.
We find the critical times at which the rate function becomes non-analytical, showing its associated critical exponent as well as the corrections introduced by a finite frequency ratio.
arXiv Detail & Related papers (2020-08-31T17:31:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.