Circuit Complexity From Supersymmetric Quantum Field Theory With Morse
Function
- URL: http://arxiv.org/abs/2101.12582v3
- Date: Thu, 11 Aug 2022 05:23:36 GMT
- Title: Circuit Complexity From Supersymmetric Quantum Field Theory With Morse
Function
- Authors: Sayantan Choudhury, Sachin Panneer Selvam, K. Shirish
- Abstract summary: We study the relationship between the circuit complexity and Morse theory within the framework of algebraic topology.
We provide technical proof of the well known universal connecting relation between quantum chaos and circuit complexity.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computation of circuit complexity has gained much attention in the
Theoretical Physics community in recent times to gain insights into the chaotic
features and random fluctuations of fields in the quantum regime. Recent
studies of circuit complexity take inspiration from Nielsen's geometric
approach, which is based on the idea of optimal quantum control in which a cost
function is introduced for the various possible path to determine the optimum
circuit. In this paper, we study the relationship between the circuit
complexity and Morse theory within the framework of algebraic topology, which
will then help us study circuit complexity in supersymmetric quantum field
theory describing both simple and inverted harmonic oscillators up to higher
orders of quantum corrections. We will restrict ourselves to $\mathcal{N} = 1$
supersymmetry with one fermionic generator $Q_{\alpha}$. The expression of
circuit complexity in quantum regime would then be given by the Hessian of the
Morse function in supersymmetric quantum field theory. We also provide
technical proof of the well known universal connecting relation between quantum
chaos and circuit complexity of the supersymmetric quantum field theories,
using the general description of Morse theory.
Related papers
- Benchmarking quantum chaos from geometric complexity [0.23436632098950458]
We consider a new method to study geometric complexity for interacting non-Gaussian quantum mechanical systems.
Within some limitations, geometric complexity can indeed be a good indicator of quantum chaos.
arXiv Detail & Related papers (2024-10-24T14:04:58Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Learning marginals suffices! [14.322753787990036]
We investigate the relationship between the sample complexity of learning a quantum state and the circuit complexity of the state.
We show that learning its marginals for the quantum state with low circuit complexity suffices for state tomography.
arXiv Detail & Related papers (2023-03-15T21:09:29Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Circuit Complexity in an interacting quenched Quantum Field Theory [0.0]
We explore the effects of a quantum quench on the circuit complexity for a quenched quantum field theory having weakly coupled quartic interaction.
We show the analytical computation of circuit complexity for the quenched and interacting field theory.
arXiv Detail & Related papers (2022-09-07T18:00:03Z) - Analysis of arbitrary superconducting quantum circuits accompanied by a
Python package: SQcircuit [0.0]
Superconducting quantum circuits are a promising hardware platform for realizing a fault-tolerant quantum computer.
We develop a framework to construct a superconducting quantum circuit's quantized Hamiltonian from its physical description.
We implement the methods described in this work in an open-source Python package SQcircuit.
arXiv Detail & Related papers (2022-06-16T17:24:51Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum State Complexity in Computationally Tractable Quantum Circuits [0.0]
We discuss a special class of numerically tractable quantum circuits, known as quantum automaton circuits.
We show that automaton wave functions have high quantum state complexity.
We present evidence of a linear growth of design complexity in local quantum circuits.
arXiv Detail & Related papers (2020-09-11T16:25:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.