Analysis of arbitrary superconducting quantum circuits accompanied by a
Python package: SQcircuit
- URL: http://arxiv.org/abs/2206.08319v3
- Date: Thu, 21 Sep 2023 08:55:19 GMT
- Title: Analysis of arbitrary superconducting quantum circuits accompanied by a
Python package: SQcircuit
- Authors: Taha Rajabzadeh, Zhaoyou Wang, Nathan Lee, Takuma Makihara, Yudan Guo,
Amir H. Safavi-Naeini
- Abstract summary: Superconducting quantum circuits are a promising hardware platform for realizing a fault-tolerant quantum computer.
We develop a framework to construct a superconducting quantum circuit's quantized Hamiltonian from its physical description.
We implement the methods described in this work in an open-source Python package SQcircuit.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Superconducting quantum circuits are a promising hardware platform for
realizing a fault-tolerant quantum computer. Accelerating progress in this
field of research demands general approaches and computational tools to analyze
and design more complex superconducting circuits. We develop a framework to
systematically construct a superconducting quantum circuit's quantized
Hamiltonian from its physical description. As is often the case with quantum
descriptions of multicoordinate systems, the complexity rises rapidly with the
number of variables. Therefore, we introduce a set of coordinate
transformations with which we can find bases to diagonalize the Hamiltonian
efficiently. Furthermore, we broaden our framework's scope to calculate the
circuit's key properties required for optimizing and discovering novel qubits.
We implement the methods described in this work in an open-source Python
package SQcircuit. In this manuscript, we introduce the reader to the SQcircuit
environment and functionality. We show through a series of examples how to
analyze a number of interesting quantum circuits and obtain features such as
the spectrum, coherence times, transition matrix elements, coupling operators,
and the phase coordinate representation of eigenfunctions.
Related papers
- Circuit Implementation of Discrete-Time Quantum Walks on Complex Networks [2.0257616108612373]
Quantum walks are powerful tools for various graph-based applications.
We present a circuit design for implementing discrete-time quantum walks on complex networks.
arXiv Detail & Related papers (2024-08-28T09:11:47Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Lightcone Bounds for Quantum Circuit Mapping via Uncomplexity [1.0360348400670518]
We show that a minimal SWAP-gate count for executing a quantum circuit on a device emerges via the minimization of the distance between quantum states.
This work constitutes the first use of quantum circuit uncomplexity to practically-relevant quantum computing.
arXiv Detail & Related papers (2024-02-01T10:32:05Z) - Symmetry-Based Quantum Circuit Mapping [2.51705778594846]
We introduce a quantum circuit remapping algorithm that leverages the intrinsic symmetries in quantum processors.
This algorithm identifies all topologically equivalent circuit mappings by constraining the search space using symmetries and accelerates the scoring of each mapping using vector computation.
arXiv Detail & Related papers (2023-10-27T10:04:34Z) - Quantivine: A Visualization Approach for Large-scale Quantum Circuit
Representation and Analysis [31.203764035373677]
We develop Quantivine, an interactive system for exploring and understanding quantum circuits.
A series of novel circuit visualizations are designed to uncover contextual details such as qubit provenance, parallelism, and entanglement.
The effectiveness of Quantivine is demonstrated through two usage scenarios of quantum circuits with up to 100 qubits.
arXiv Detail & Related papers (2023-07-18T04:51:28Z) - The Basis of Design Tools for Quantum Computing: Arrays, Decision
Diagrams, Tensor Networks, and ZX-Calculus [55.58528469973086]
Quantum computers promise to efficiently solve important problems classical computers never will.
A fully automated quantum software stack needs to be developed.
This work provides a look "under the hood" of today's tools and showcases how these means are utilized in them, e.g., for simulation, compilation, and verification of quantum circuits.
arXiv Detail & Related papers (2023-01-10T19:00:00Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum State Complexity in Computationally Tractable Quantum Circuits [0.0]
We discuss a special class of numerically tractable quantum circuits, known as quantum automaton circuits.
We show that automaton wave functions have high quantum state complexity.
We present evidence of a linear growth of design complexity in local quantum circuits.
arXiv Detail & Related papers (2020-09-11T16:25:11Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.