論文の概要: Surprisingly Simple Semi-Supervised Domain Adaptation with Pretraining
and Consistency
- arxiv url: http://arxiv.org/abs/2101.12727v1
- Date: Fri, 29 Jan 2021 18:40:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-01 12:45:56.368587
- Title: Surprisingly Simple Semi-Supervised Domain Adaptation with Pretraining
and Consistency
- Title(参考訳): 予習と一貫性を備えた驚くほど単純な半教師付きドメイン適応
- Authors: Samarth Mishra, Kate Saenko, Venkatesh Saligrama
- Abstract要約: ビジュアルドメイン適応は、異なるソースドメインで利用可能なラベルを使用して、ターゲットのビジュアルドメインからイメージを分類する学習を含む。
いくつかの目標ラベルが存在する場合、(回転予測による)自己スーパービジョンや整合正則化といった単純な手法が、適切な目標分類器を学習するための対角アライメントなしで有効であることを示す。
我々の事前学習と一貫性(PAC)アプローチは、この半教師付きドメイン適応タスクにおいて、複数のデータセットにまたがる複数の対向的なドメインアライメント手法を超越して、技術精度を達成することができる。
- 参考スコア(独自算出の注目度): 93.89773386634717
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual domain adaptation involves learning to classify images from a target
visual domain using labels available in a different source domain. A range of
prior work uses adversarial domain alignment to try and learn a domain
invariant feature space, where a good source classifier can perform well on
target data. This however, can lead to errors where class A features in the
target domain get aligned to class B features in source. We show that in the
presence of a few target labels, simple techniques like self-supervision (via
rotation prediction) and consistency regularization can be effective without
any adversarial alignment to learn a good target classifier. Our Pretraining
and Consistency (PAC) approach, can achieve state of the art accuracy on this
semi-supervised domain adaptation task, surpassing multiple adversarial domain
alignment methods, across multiple datasets. Notably, it outperforms all recent
approaches by 3-5% on the large and challenging DomainNet benchmark, showing
the strength of these simple techniques in fixing errors made by adversarial
alignment.
- Abstract(参考訳): ビジュアルドメイン適応は、異なるソースドメインで利用可能なラベルを使用して、ターゲットのビジュアルドメインからイメージを分類する学習を含む。
一連の先行作業では、逆のドメインアライメントを使用して、適切なソース分類器がターゲットデータでうまく機能するドメイン不変機能空間を学習しようとする。
しかしこれは、ターゲットドメインのクラスA機能がソースのクラスB機能と一致しているエラーにつながる可能性がある。
ターゲットラベルが複数存在する場合, 自己監督(回転予測による)や整合性正規化といった単純な手法が, 逆アライメントなしに有効であり, 優れたターゲット分類器を学習できることを示した。
当社のPAC(Pretraining and Consistency)アプローチは、この半監視されたドメイン適応タスクの最先端の精度を達成し、複数のデータセットにわたる複数の逆のドメインアライメント方法を超えることができます。
特に、大きな挑戦的なdomainnetベンチマークでは、最近のアプローチを3~5%上回っており、敵のアライメントによるエラーの修正において、これらの単純なテクニックの強みを示している。
関連論文リスト
- Attention-based Class-Conditioned Alignment for Multi-Source Domain Adaptation of Object Detectors [11.616494893839757]
オブジェクト検出(OD)のドメイン適応手法は、ソースドメインとターゲットドメイン間の特徴調整を促進することによって、分散シフトの影響を軽減する。
ODのための最先端MSDA手法の多くは、クラスに依存しない方法で特徴アライメントを実行する。
ドメイン間で各オブジェクトカテゴリのインスタンスをアライメントするMSDAのための注目型クラス条件アライメント手法を提案する。
論文 参考訳(メタデータ) (2024-03-14T23:31:41Z) - CA-UDA: Class-Aware Unsupervised Domain Adaptation with Optimal
Assignment and Pseudo-Label Refinement [84.10513481953583]
教師なしドメイン適応(Unsupervised domain adapt, UDA)は、ターゲットデータに欠けているラベルのサロゲートとして、優れた擬似ラベルの選択に焦点を当てる。
ソースとターゲットドメインの共有ネットワークが通常、擬似ラベルの選択に使用されるため、擬似ラベルを劣化させるソースドメインバイアスは依然として存在する。
本稿では, 擬似ラベルの品質向上のためのCA-UDAを提案し, 最適課題, 擬似ラベル改善戦略, クラス対応ドメインアライメントを提案する。
論文 参考訳(メタデータ) (2022-05-26T18:45:04Z) - Domain Adaptation via Prompt Learning [39.97105851723885]
Unsupervised Domain Adaption (UDA) は、十分にアノテーションされたソースドメインから学習したモデルをターゲットドメインに適応させることを目的としている。
我々は,Prompt Learning (DAPL) によるドメイン適応という,UDAのための新しいプロンプト学習パラダイムを導入する。
論文 参考訳(メタデータ) (2022-02-14T13:25:46Z) - Cross-domain Contrastive Learning for Unsupervised Domain Adaptation [108.63914324182984]
教師なしドメイン適応(Unsupervised domain adapt、UDA)は、完全にラベル付けされたソースドメインから異なるラベル付けされていないターゲットドメインに学習した知識を転送することを目的としている。
対照的な自己教師型学習に基づいて、トレーニングとテストセット間のドメインの相違を低減するために、機能を整列させます。
論文 参考訳(メタデータ) (2021-06-10T06:32:30Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z) - Classes Matter: A Fine-grained Adversarial Approach to Cross-domain
Semantic Segmentation [95.10255219396109]
クラスレベルの特徴アライメントのための微粒な逆学習戦略を提案する。
ドメイン区別器として機能するだけでなく、クラスレベルでドメインを区別する、きめ細かいドメイン識別器を採用しています。
CCD (Class Center Distance) を用いた解析により, 粒度の細かい対角戦略により, クラスレベルのアライメントが向上することが確認された。
論文 参考訳(メタデータ) (2020-07-17T20:50:59Z) - Contradistinguisher: A Vapnik's Imperative to Unsupervised Domain
Adaptation [7.538482310185133]
本研究では,コントラスト特徴を学習するContradistinguisherと呼ばれるモデルを提案する。
Office-31とVisDA-2017における最先端のデータセットを、シングルソースとマルチソースの両方で実現しています。
論文 参考訳(メタデータ) (2020-05-25T19:54:38Z) - Cross-domain Self-supervised Learning for Domain Adaptation with Few
Source Labels [78.95901454696158]
ドメイン適応のためのクロスドメイン自己教師型学習手法を提案する。
本手法は,ソースラベルが少ない新しいターゲット領域において,ターゲット精度を著しく向上させる。
論文 参考訳(メタデータ) (2020-03-18T15:11:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。