論文の概要: Contradistinguisher: A Vapnik's Imperative to Unsupervised Domain
Adaptation
- arxiv url: http://arxiv.org/abs/2005.14007v3
- Date: Tue, 13 Apr 2021 11:55:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 05:30:16.564675
- Title: Contradistinguisher: A Vapnik's Imperative to Unsupervised Domain
Adaptation
- Title(参考訳): contradistinguisher: a vapnik's imperative to unsupervised domain adaptation
- Authors: Sourabh Balgi and Ambedkar Dukkipati
- Abstract要約: 本研究では,コントラスト特徴を学習するContradistinguisherと呼ばれるモデルを提案する。
Office-31とVisDA-2017における最先端のデータセットを、シングルソースとマルチソースの両方で実現しています。
- 参考スコア(独自算出の注目度): 7.538482310185133
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A complex combination of simultaneous supervised-unsupervised learning is
believed to be the key to humans performing tasks seamlessly across multiple
domains or tasks. This phenomenon of cross-domain learning has been very well
studied in domain adaptation literature. Recent domain adaptation works rely on
an indirect way of first aligning the source and target domain distributions
and then train a classifier on the labeled source domain to classify the target
domain. However, this approach has the main drawback that obtaining a
near-perfect alignment of the domains in itself might be difficult/impossible
(e.g., language domains). To address this, we follow Vapnik's imperative of
statistical learning that states any desired problem should be solved in the
most direct way rather than solving a more general intermediate task and
propose a direct approach to domain adaptation that does not require domain
alignment. We propose a model referred Contradistinguisher that learns
contrastive features and whose objective is to jointly learn to
contradistinguish the unlabeled target domain in an unsupervised way and
classify in a supervised way on the source domain. We achieve the
state-of-the-art on Office-31 and VisDA-2017 datasets in both single-source and
multi-source settings. We also notice that the contradistinguish loss improves
the model performance by increasing the shape bias.
- Abstract(参考訳): 同時教師なし学習の複雑な組み合わせは、複数のドメインやタスクをシームレスに実行する人間の鍵であると考えられている。
クロスドメイン学習のこの現象はドメイン適応文学において非常によく研究されている。
最近のドメイン適応作業は、ソースとターゲットドメインの分布を最初に整列し、ラベル付きソースドメインの分類器を訓練してターゲットドメインを分類する間接的な方法に依存している。
しかし、このアプローチの主な欠点は、ドメイン自体のほぼ完全なアライメントを得ることが困難かつ不可能である(例えば、言語ドメイン)。
これに対処するため、vapnikの統計学習の命令に従い、望ましい問題はより一般的な中間タスクを解決するよりも、最も直接的な方法で解くべきであると述べ、ドメインアライメントを必要としないドメイン適応への直接的なアプローチを提案する。
コントラスト特徴を学習するContradistinguisherと呼ばれるモデルを提案し、その目的は、ラベルのない対象ドメインを教師なしの方法で識別し、ソースドメイン上で教師付き方法で分類することである。
Office-31とVisDA-2017における最先端のデータセットを、シングルソースとマルチソースの両方で実現しています。
また, 形状バイアスを増大させることにより, 対向損失がモデル性能を向上させることにも気付く。
関連論文リスト
- Contrastive Adversarial Training for Unsupervised Domain Adaptation [2.432037584128226]
様々なドメイン適応タスクにおいて、ドメイン逆行訓練がうまく採用されている。
大規模なモデルでは、敵のトレーニングがソースドメインに偏りやすく、ターゲットドメインにはほとんど適応しない。
本稿では、ラベル付きソースドメインのサンプルを利用して、ターゲットドメインの機能生成を強化・調整するコントラッシブ・逆行訓練(CAT)手法を提案する。
論文 参考訳(メタデータ) (2024-07-17T17:59:21Z) - Multilevel Knowledge Transfer for Cross-Domain Object Detection [26.105283273950942]
ドメインシフトは、特定のドメイン(ソース)でトレーニングされたモデルが、異なるドメイン(ターゲット)のサンプルに露出しても、うまく動作しない、よく知られた問題である。
本研究では,オブジェクト検出タスクにおける領域シフト問題に対処する。
私たちのアプローチは、ソースとターゲットドメイン間のドメインシフトを徐々に削除することに依存しています。
論文 参考訳(メタデータ) (2021-08-02T15:24:40Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
オブジェクト検出のための教師なしドメイン適応は、多くの現実世界のアプリケーションにおいて難しい問題である。
本稿では、中間領域画像生成とドメイン・アドバイザリー・トレーニングを統合した新しい機能アライメント・ネットワーク(AFAN)を提案する。
提案手法は、類似および異種ドメイン適応の双方において、標準ベンチマークにおける最先端の手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2021-06-10T05:01:20Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z) - Prototypical Cross-domain Self-supervised Learning for Few-shot
Unsupervised Domain Adaptation [91.58443042554903]
FUDA(Unsupervised Domain Adaptation)のためのPCS(Prototypical Cross-Domain Self-Supervised Learning)フレームワークを提案する。
PCSは、クロスドメインのローレベルな機能アライメントを行うだけでなく、ドメイン間の共有埋め込み空間におけるセマンティック構造をエンコードおよびアライメントする。
最新の手法と比較して、pcsは、fuda上の異なるドメインペアの平均分類精度を10.5%、office、office-home、visda-2017、domainnetで3.5%、9.0%、13.2%改善している。
論文 参考訳(メタデータ) (2021-03-31T02:07:42Z) - Surprisingly Simple Semi-Supervised Domain Adaptation with Pretraining
and Consistency [93.89773386634717]
ビジュアルドメイン適応は、異なるソースドメインで利用可能なラベルを使用して、ターゲットのビジュアルドメインからイメージを分類する学習を含む。
いくつかの目標ラベルが存在する場合、(回転予測による)自己スーパービジョンや整合正則化といった単純な手法が、適切な目標分類器を学習するための対角アライメントなしで有効であることを示す。
我々の事前学習と一貫性(PAC)アプローチは、この半教師付きドメイン適応タスクにおいて、複数のデータセットにまたがる複数の対向的なドメインアライメント手法を超越して、技術精度を達成することができる。
論文 参考訳(メタデータ) (2021-01-29T18:40:17Z) - Unsupervised Cross-domain Image Classification by Distance Metric Guided
Feature Alignment [11.74643883335152]
教師なしドメイン適応は、ソースドメインからターゲットドメインに知識を転送する有望な道である。
本稿では,距離メトリックガイド機能アライメント(MetFA)を提案する。
我々のモデルは、クラス分布アライメントを統合して、ソースドメインからターゲットドメインにセマンティック知識を転送します。
論文 参考訳(メタデータ) (2020-08-19T13:36:57Z) - Alleviating Semantic-level Shift: A Semi-supervised Domain Adaptation
Method for Semantic Segmentation [97.8552697905657]
このタスクの重要な課題は、ソースとターゲットドメイン間のデータ分散の相違を緩和する方法である。
本稿では,グローバルな視点とローカルな視点の両方から分布の整合性を促進できるASS(Alleviating Semantic-level Shift)を提案する。
GTA5、Cityscapes、Synthia、Cityscapesの2つのドメイン適応タスクにASSを適用します。
論文 参考訳(メタデータ) (2020-04-02T03:25:05Z) - Cross-domain Self-supervised Learning for Domain Adaptation with Few
Source Labels [78.95901454696158]
ドメイン適応のためのクロスドメイン自己教師型学習手法を提案する。
本手法は,ソースラベルが少ない新しいターゲット領域において,ターゲット精度を著しく向上させる。
論文 参考訳(メタデータ) (2020-03-18T15:11:07Z) - Unsupervised Domain Adaptive Object Detection using Forward-Backward
Cyclic Adaptation [13.163271874039191]
本稿では,フォワード・バック・サイクリック(FBC)トレーニングによる物体検出のための教師なし領域適応手法を提案する。
近年, 対角訓練に基づく領域適応法は, 限界特徴分布アライメントによる領域差最小化に有効であることが示された。
本稿では,後方ホッピングによるソースからターゲットへの適応と,前方通過によるターゲットからソースへの適応を反復的に計算するフォワード・バック・サイクル適応を提案する。
論文 参考訳(メタデータ) (2020-02-03T06:24:58Z) - Improve Unsupervised Domain Adaptation with Mixup Training [18.329571222689562]
本稿では,ラベルの豊富な関連するソースドメインを用いて,注釈のないターゲットドメインの予測モデルを構築するという課題について検討する。
近年の研究では、ドメイン不変の特徴を学習する一般的な敵対的アプローチは、望ましいドメイン性能を達成するには不十分である。
対象データに対する一般化性能に直接対処するために、ミックスアップ定式化を用いて、ドメイン間のトレーニング制約を強制することを提案する。
論文 参考訳(メタデータ) (2020-01-03T01:21:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。