A long-distance quantum-capable internet testbed
- URL: http://arxiv.org/abs/2101.12742v4
- Date: Wed, 16 Oct 2024 18:38:45 GMT
- Title: A long-distance quantum-capable internet testbed
- Authors: Dounan Du, Leonardo Castillo-Veneros, Dillion Cottrill, Guo-Dong Cui, Paul Stankus, Dimitrios Katramatos, Julián Martínez-Rincón, Eden Figueroa,
- Abstract summary: We present the implementation of a quantum-enabled internet prototype using a novel physics-centric stack-based quantum network paradigm.
We demonstrate this concept using a deployed large-scale quantum network connecting laboratories at Stony Brook University and the Brookhaven National Laboratory.
- Score: 0.0
- License:
- Abstract: Building a Quantum Internet requires the development of innovative quantum-enabling networking architectures that integrate advanced communication systems with long-distance quantum communication hardware. Here, we present the implementation of a quantum-enabled internet prototype using a novel physics-centric stack-based quantum network paradigm to govern the dynamics of multiple light-matter Hamiltonians across distant nodes. We demonstrate this concept using a deployed large-scale intercity quantum network connecting laboratories at Stony Brook University and the Brookhaven National Laboratory. This network facilitates a fundamental long-distance quantum network service -that of high-visibility Hong-Ou-Mandel interference of telecom quantum states generated in two independent, telecom-compatible quantum light-matter interfaces separated by a distance of 158 km.
Related papers
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Telecom band quantum dot technologies for long-distance quantum networks [3.625118537787253]
A future quantum internet is expected to generate, distribute, store and process quantum bits (qubits) over the globe.
To facilitate the long-haul operations, quantum repeaters have to be operated in the telecom wavelengths.
We present the physics and the technological developments towards epitaxial QD devices emitting at the telecom O- and C-bands for quantum networks.
arXiv Detail & Related papers (2023-11-07T13:46:35Z) - Practical limitations on robustness and scalability of quantum Internet [0.7499722271664144]
We study the limitations on the scaling and robustness of quantum Internet.
We present practical bottlenecks for secure communication, delegated computing, and resource distribution among end nodes.
For some examples of quantum networks, we present algorithms to perform different quantum network tasks of interest.
arXiv Detail & Related papers (2023-08-24T12:32:48Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - Quantum Internet: The Future of Internetworking [16.313110394211154]
The purpose of a quantum Internet is to enable applications that are fundamentally out of reach for the classical Internet.
This chapter aims to present the main concepts, challenges, and opportunities for research in quantum information, quantum computing and quantum networking.
arXiv Detail & Related papers (2023-04-30T23:17:47Z) - Quantum NETwork: from theory to practice [9.506954148435801]
We aim to provide an up-to-date review of the field of quantum networks from both theoretical and experimental perspectives.
We introduce a newly developed quantum network toolkit to facilitate the exploration and evaluation of innovative ideas.
arXiv Detail & Related papers (2022-12-02T15:05:25Z) - Cavity-enhanced quantum network nodes [0.0]
A future quantum network will consist of quantum processors that are connected by quantum channels.
I will describe how optical resonators facilitate quantum network nodes.
arXiv Detail & Related papers (2022-05-30T18:50:35Z) - Physics-Informed Quantum Communication Networks: A Vision Towards the
Quantum Internet [79.8886946157912]
We present a novel analysis of the performance of quantum communication networks (QCNs) in a physics-informed manner.
The need of the physics-informed approach is then assessed and its fundamental role in designing practical QCNs is analyzed.
We identify novel physics-informed performance metrics and controls that enable QCNs to leverage the state-of-the-art advancements in quantum technologies.
arXiv Detail & Related papers (2022-04-20T05:32:16Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - A P4 Data Plane for the Quantum Internet [68.97335984455059]
A new -- quantum -- network stack will be needed to account for the fundamentally new properties of quantum entanglement.
In the non-quantum world, programmable data planes have broken the pattern of ossification of the protocol stack.
We demonstrate how we use P4$_16$ to explore abstractions and device architectures for quantum networks.
arXiv Detail & Related papers (2020-10-21T19:37:23Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.