Belief function-based semi-supervised learning for brain tumor
segmentation
- URL: http://arxiv.org/abs/2102.00097v1
- Date: Fri, 29 Jan 2021 22:39:16 GMT
- Title: Belief function-based semi-supervised learning for brain tumor
segmentation
- Authors: Ling Huang, Su Ruan, Thierry Denoeux
- Abstract summary: Deep learning makes it possible to detect and segment a lesion field using annotated data.
However, obtaining precisely annotated data is very challenging in the medical domain.
In this paper, we address the uncertain boundary problem by a new evidential neural network with an information fusion strategy.
- Score: 23.21410263735263
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Precise segmentation of a lesion area is important for optimizing its
treatment. Deep learning makes it possible to detect and segment a lesion field
using annotated data. However, obtaining precisely annotated data is very
challenging in the medical domain. Moreover, labeling uncertainty and
imprecision make segmentation results unreliable. In this paper, we address the
uncertain boundary problem by a new evidential neural network with an
information fusion strategy, and the scarcity of annotated data by
semi-supervised learning. Experimental results show that our proposal has
better performance than state-of-the-art methods.
Related papers
- Guidelines for Cerebrovascular Segmentation: Managing Imperfect Annotations in the context of Semi-Supervised Learning [3.231698506153459]
Supervised learning methods achieve excellent performances when fed with a sufficient amount of labeled data.
Such labels are typically highly time-consuming, error-prone and expensive to produce.
Semi-supervised learning approaches leverage both labeled and unlabeled data, and are very useful when only a small fraction of the dataset is labeled.
arXiv Detail & Related papers (2024-04-02T09:31:06Z) - Semi- and Weakly-Supervised Learning for Mammogram Mass Segmentation with Limited Annotations [49.33388736227072]
We propose a semi- and weakly-supervised learning framework for mass segmentation.
We use limited strongly-labeled samples and sufficient weakly-labeled samples to achieve satisfactory performance.
Experiments on CBIS-DDSM and INbreast datasets demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-03-14T12:05:25Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - Adaptive Semi-Supervised Segmentation of Brain Vessels with Ambiguous
Labels [63.415444378608214]
Our approach incorporates innovative techniques including progressive semi-supervised learning, adaptative training strategy, and boundary enhancement.
Experimental results on 3DRA datasets demonstrate the superiority of our method in terms of mesh-based segmentation metrics.
arXiv Detail & Related papers (2023-08-07T14:16:52Z) - Clinically Acceptable Segmentation of Organs at Risk in Cervical Cancer
Radiation Treatment from Clinically Available Annotations [0.0]
We present an approach to learn a deep learning model for the automatic segmentation of Organs at Risk (OARs) in cervical cancer radiation treatment.
We employ simples for automatic data cleaning to minimize data inhomogeneity, label noise, and missing annotations.
We develop a semi-supervised learning approach utilizing a teacher-student setup, annotation imputation, and uncertainty-guided training to learn in presence of missing annotations.
arXiv Detail & Related papers (2023-02-21T13:24:40Z) - Constrained self-supervised method with temporal ensembling for fiber
bundle detection on anatomic tracing data [0.08329098197319453]
In this work, we propose a deep learning method with a self-supervised loss function for accurate segmentation of fiber bundles on the tracer sections from macaque brains.
Evaluation of our method on unseen sections from a different macaque yields promising results with a true positive rate of 0.90.
arXiv Detail & Related papers (2022-08-06T19:17:02Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Uncertainty-Guided Mutual Consistency Learning for Semi-Supervised
Medical Image Segmentation [9.745971699005857]
We propose a novel uncertainty-guided mutual consistency learning framework for medical image segmentation.
It integrates intra-task consistency learning from up-to-date predictions for self-ensembling and cross-task consistency learning from task-level regularization to exploit geometric shape information.
Our method achieves performance gains by leveraging unlabeled data and outperforms existing semi-supervised segmentation methods.
arXiv Detail & Related papers (2021-12-05T08:19:41Z) - Uncertainty-Aware Deep Co-training for Semi-supervised Medical Image
Segmentation [4.935055133266873]
We propose a novel uncertainty-aware scheme to make models learn regions purposefully.
Specifically, we employ Monte Carlo Sampling as an estimation method to attain an uncertainty map.
In the backward process, we joint unsupervised and supervised losses to accelerate the convergence of the network.
arXiv Detail & Related papers (2021-11-23T03:26:24Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.