Guidelines for Cerebrovascular Segmentation: Managing Imperfect Annotations in the context of Semi-Supervised Learning
- URL: http://arxiv.org/abs/2404.01765v1
- Date: Tue, 2 Apr 2024 09:31:06 GMT
- Title: Guidelines for Cerebrovascular Segmentation: Managing Imperfect Annotations in the context of Semi-Supervised Learning
- Authors: Pierre Rougé, Pierre-Henri Conze, Nicolas Passat, Odyssée Merveille,
- Abstract summary: Supervised learning methods achieve excellent performances when fed with a sufficient amount of labeled data.
Such labels are typically highly time-consuming, error-prone and expensive to produce.
Semi-supervised learning approaches leverage both labeled and unlabeled data, and are very useful when only a small fraction of the dataset is labeled.
- Score: 3.231698506153459
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Segmentation in medical imaging is an essential and often preliminary task in the image processing chain, driving numerous efforts towards the design of robust segmentation algorithms. Supervised learning methods achieve excellent performances when fed with a sufficient amount of labeled data. However, such labels are typically highly time-consuming, error-prone and expensive to produce. Alternatively, semi-supervised learning approaches leverage both labeled and unlabeled data, and are very useful when only a small fraction of the dataset is labeled. They are particularly useful for cerebrovascular segmentation, given that labeling a single volume requires several hours for an expert. In addition to the challenge posed by insufficient annotations, there are concerns regarding annotation consistency. The task of annotating the cerebrovascular tree is inherently ambiguous. Due to the discrete nature of images, the borders and extremities of vessels are often unclear. Consequently, annotations heavily rely on the expert subjectivity and on the underlying clinical objective. These discrepancies significantly increase the complexity of the segmentation task for the model and consequently impair the results. Consequently, it becomes imperative to provide clinicians with precise guidelines to improve the annotation process and construct more uniform datasets. In this article, we investigate the data dependency of deep learning methods within the context of imperfect data and semi-supervised learning, for cerebrovascular segmentation. Specifically, this study compares various state-of-the-art semi-supervised methods based on unsupervised regularization and evaluates their performance in diverse quantity and quality data scenarios. Based on these experiments, we provide guidelines for the annotation and training of cerebrovascular segmentation models.
Related papers
- Impact of imperfect annotations on CNN training and performance for instance segmentation and classification in digital pathology [1.2277343096128712]
We investigate the impact of noisy annotations on the training and performance of a state-of-the-art CNN model for the combined task of detecting, segmenting and classifying nuclei in histopathology images.
Our results indicate that the utilisation of a small, correctly annotated validation set is instrumental in avoiding overfitting and maintaining model performance to a large extent.
arXiv Detail & Related papers (2024-10-18T10:51:10Z) - Semi- and Weakly-Supervised Learning for Mammogram Mass Segmentation with Limited Annotations [49.33388736227072]
We propose a semi- and weakly-supervised learning framework for mass segmentation.
We use limited strongly-labeled samples and sufficient weakly-labeled samples to achieve satisfactory performance.
Experiments on CBIS-DDSM and INbreast datasets demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-03-14T12:05:25Z) - Explainable Semantic Medical Image Segmentation with Style [7.074258860680265]
We propose a fully supervised generative framework that can achieve generalisable segmentation with only limited labelled data.
The proposed approach creates medical image style paired with a segmentation task driven discriminator incorporating end-to-end adversarial training.
Experiments on a fully semantic, publicly available pelvis dataset demonstrated that our method is more generalisable to shifts than other state-of-the-art methods.
arXiv Detail & Related papers (2023-03-10T04:34:51Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Uncertainty-Guided Mutual Consistency Learning for Semi-Supervised
Medical Image Segmentation [9.745971699005857]
We propose a novel uncertainty-guided mutual consistency learning framework for medical image segmentation.
It integrates intra-task consistency learning from up-to-date predictions for self-ensembling and cross-task consistency learning from task-level regularization to exploit geometric shape information.
Our method achieves performance gains by leveraging unlabeled data and outperforms existing semi-supervised segmentation methods.
arXiv Detail & Related papers (2021-12-05T08:19:41Z) - Learning from Partially Overlapping Labels: Image Segmentation under
Annotation Shift [68.6874404805223]
We propose several strategies for learning from partially overlapping labels in the context of abdominal organ segmentation.
We find that combining a semi-supervised approach with an adaptive cross entropy loss can successfully exploit heterogeneously annotated data.
arXiv Detail & Related papers (2021-07-13T09:22:24Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z) - A Teacher-Student Framework for Semi-supervised Medical Image
Segmentation From Mixed Supervision [62.4773770041279]
We develop a semi-supervised learning framework based on a teacher-student fashion for organ and lesion segmentation.
We show our model is robust to the quality of bounding box and achieves comparable performance compared with full-supervised learning methods.
arXiv Detail & Related papers (2020-10-23T07:58:20Z) - Disentangling Human Error from the Ground Truth in Segmentation of
Medical Images [12.009437407687987]
We present a method for jointly learning, from purely noisy observations alone, the reliability of individual annotators and the true segmentation label distributions.
We demonstrate the utility of the method on three public medical imaging segmentation datasets with simulated (when necessary) and real diverse annotations.
arXiv Detail & Related papers (2020-07-31T11:03:12Z) - NINEPINS: Nuclei Instance Segmentation with Point Annotations [2.19221864553448]
We propose an algorithm for instance segmentation that uses pseudo-label segmentations generated automatically from point annotations.
With the generated segmentation masks, the proposed method trains a modified version of HoVer-Net model to achieve instance segmentation.
Experimental results show that the proposed method is robust to inaccuracies in point annotations and comparison with Hover-Net trained with fully annotated instance masks shows that a degradation in segmentation performance does not always imply a degradation in higher order tasks such as tissue classification.
arXiv Detail & Related papers (2020-06-24T08:28:52Z) - Confident Coreset for Active Learning in Medical Image Analysis [57.436224561482966]
We propose a novel active learning method, confident coreset, which considers both uncertainty and distribution for effectively selecting informative samples.
By comparative experiments on two medical image analysis tasks, we show that our method outperforms other active learning methods.
arXiv Detail & Related papers (2020-04-05T13:46:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.