Adaptive Sequential Design for a Single Time-Series
- URL: http://arxiv.org/abs/2102.00102v1
- Date: Fri, 29 Jan 2021 22:51:45 GMT
- Title: Adaptive Sequential Design for a Single Time-Series
- Authors: Ivana Malenica, Aurelien Bibaut and Mark J. van der Laan
- Abstract summary: We learn an optimal, unknown choice of the controlled components of a design in order to optimize the expected outcome.
We adapt the randomization mechanism for future time-point experiments based on the data collected on the individual over time.
- Score: 2.578242050187029
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The current work is motivated by the need for robust statistical methods for
precision medicine; as such, we address the need for statistical methods that
provide actionable inference for a single unit at any point in time. We aim to
learn an optimal, unknown choice of the controlled components of the design in
order to optimize the expected outcome; with that, we adapt the randomization
mechanism for future time-point experiments based on the data collected on the
individual over time. Our results demonstrate that one can learn the optimal
rule based on a single sample, and thereby adjust the design at any point t
with valid inference for the mean target parameter. This work provides several
contributions to the field of statistical precision medicine. First, we define
a general class of averages of conditional causal parameters defined by the
current context for the single unit time-series data. We define a nonparametric
model for the probability distribution of the time-series under few
assumptions, and aim to fully utilize the sequential randomization in the
estimation procedure via the double robust structure of the efficient influence
curve of the proposed target parameter. We present multiple
exploration-exploitation strategies for assigning treatment, and methods for
estimating the optimal rule. Lastly, we present the study of the data-adaptive
inference on the mean under the optimal treatment rule, where the target
parameter adapts over time in response to the observed context of the
individual. Our target parameter is pathwise differentiable with an efficient
influence function that is doubly robust - which makes it easier to estimate
than previously proposed variations. We characterize the limit distribution of
our estimator under a Donsker condition expressed in terms of a notion of
bracketing entropy adapted to martingale settings.
Related papers
- Statistical Inference for Temporal Difference Learning with Linear Function Approximation [62.69448336714418]
Temporal Difference (TD) learning, arguably the most widely used for policy evaluation, serves as a natural framework for this purpose.
In this paper, we study the consistency properties of TD learning with Polyak-Ruppert averaging and linear function approximation, and obtain three significant improvements over existing results.
arXiv Detail & Related papers (2024-10-21T15:34:44Z) - Optimizing Probabilistic Conformal Prediction with Vectorized Non-Conformity Scores [6.059745771017814]
We propose a novel framework that enhances efficiency by first vectorizing the non-conformity scores with ranked samples and then optimizing the shape of the prediction set by varying the quantiles for samples at the same rank.
Our method delivers valid coverage while producing discontinuous and more efficient prediction sets, making it particularly suited for high-stakes applications.
arXiv Detail & Related papers (2024-10-17T16:37:03Z) - Bayesian Estimation and Tuning-Free Rank Detection for Probability Mass Function Tensors [17.640500920466984]
This paper presents a novel framework for estimating the joint PMF and automatically inferring its rank from observed data.
We derive a deterministic solution based on variational inference (VI) to approximate the posterior distributions of various model parameters. Additionally, we develop a scalable version of the VI-based approach by leveraging variational inference (SVI)
Experiments involving both synthetic data and real movie recommendation data illustrate the advantages of our VI and SVI-based methods in terms of estimation accuracy, automatic rank detection, and computational efficiency.
arXiv Detail & Related papers (2024-10-08T20:07:49Z) - Stratified Prediction-Powered Inference for Hybrid Language Model Evaluation [62.2436697657307]
Prediction-powered inference (PPI) is a method that improves statistical estimates based on limited human-labeled data.
We propose a method called Stratified Prediction-Powered Inference (StratPPI)
We show that the basic PPI estimates can be considerably improved by employing simple data stratification strategies.
arXiv Detail & Related papers (2024-06-06T17:37:39Z) - Experiment Planning with Function Approximation [49.50254688629728]
We study the problem of experiment planning with function approximation in contextual bandit problems.
We propose two experiment planning strategies compatible with function approximation.
We show that a uniform sampler achieves competitive optimality rates in the setting where the number of actions is small.
arXiv Detail & Related papers (2024-01-10T14:40:23Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - Variational Inference with Coverage Guarantees in Simulation-Based Inference [18.818573945984873]
We propose Conformalized Amortized Neural Variational Inference (CANVI)
CANVI constructs conformalized predictors based on each candidate, compares the predictors using a metric known as predictive efficiency, and returns the most efficient predictor.
We prove lower bounds on the predictive efficiency of the regions produced by CANVI and explore how the quality of a posterior approximation relates to the predictive efficiency of prediction regions based on that approximation.
arXiv Detail & Related papers (2023-05-23T17:24:04Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
Expected predictive information gain (EPIG) is an acquisition function that measures information gain in the space of predictions rather than parameters.
EPIG leads to stronger predictive performance compared with BALD across a range of datasets and models.
arXiv Detail & Related papers (2023-04-17T10:59:57Z) - Spectral Representation Learning for Conditional Moment Models [33.34244475589745]
We propose a procedure that automatically learns representations with controlled measures of ill-posedness.
Our method approximates a linear representation defined by the spectral decomposition of a conditional expectation operator.
We show this representation can be efficiently estimated from data, and establish L2 consistency for the resulting estimator.
arXiv Detail & Related papers (2022-10-29T07:48:29Z) - Counterfactual inference for sequential experiments [17.817769460838665]
We consider after-study statistical inference for sequentially designed experiments wherein multiple units are assigned treatments for multiple time points.
Our goal is to provide inference guarantees for the counterfactual mean at the smallest possible scale.
We illustrate our theory via several simulations and a case study involving data from a mobile health clinical trial HeartSteps.
arXiv Detail & Related papers (2022-02-14T17:24:27Z) - Variational Refinement for Importance Sampling Using the Forward
Kullback-Leibler Divergence [77.06203118175335]
Variational Inference (VI) is a popular alternative to exact sampling in Bayesian inference.
Importance sampling (IS) is often used to fine-tune and de-bias the estimates of approximate Bayesian inference procedures.
We propose a novel combination of optimization and sampling techniques for approximate Bayesian inference.
arXiv Detail & Related papers (2021-06-30T11:00:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.