論文の概要: Inertial Proximal Deep Learning Alternating Minimization for Efficient
Neutral Network Training
- arxiv url: http://arxiv.org/abs/2102.00267v1
- Date: Sat, 30 Jan 2021 16:40:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-05 09:15:21.024950
- Title: Inertial Proximal Deep Learning Alternating Minimization for Efficient
Neutral Network Training
- Title(参考訳): 高能率ニュートラルネットワークトレーニングのための慣性近位深層学習代替最小化
- Authors: Linbo Qiao, Tao Sun, Hengyue Pan, Dongsheng Li
- Abstract要約: この研究は、有名な慣性手法であるiPDLAMによって改良されたDLAMを開発し、電流と最後の繰り返しの線形化によって点を予測する。
実世界のデータセットの数値計算結果を報告し,提案アルゴリズムの有効性を実証した。
- 参考スコア(独自算出の注目度): 16.165369437324266
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, the Deep Learning Alternating Minimization (DLAM), which is
actually the alternating minimization applied to the penalty form of the deep
neutral networks training, has been developed as an alternative algorithm to
overcome several drawbacks of Stochastic Gradient Descent (SGD) algorithms.
This work develops an improved DLAM by the well-known inertial technique,
namely iPDLAM, which predicts a point by linearization of current and last
iterates. To obtain further training speed, we apply a warm-up technique to the
penalty parameter, that is, starting with a small initial one and increasing it
in the iterations. Numerical results on real-world datasets are reported to
demonstrate the efficiency of our proposed algorithm.
- Abstract(参考訳): 近年、ディープニュートラルネットワークトレーニングのペナルティ形式に適用される交互最小化であるDeep Learning Alternating Minimization (DLAM)は、Stochastic Gradient Descent (SGD)アルゴリズムのいくつかの欠点を克服するための代替アルゴリズムとして開発されている。
この研究は、有名な慣性手法であるiPDLAMによって改良されたDLAMを開発し、電流と最後の繰り返しの線形化によって点を予測する。
さらなるトレーニング速度を得るために,ペナルティパラメータにウォームアップ手法を適用する。
実世界データセットの数値結果を報告し,提案アルゴリズムの効率性を示す。
関連論文リスト
- Gradient-Free Training of Recurrent Neural Networks using Random Perturbations [1.1742364055094265]
リカレントニューラルネットワーク(RNN)は、チューリング完全性とシーケンシャルな処理能力のために、計算の潜在能力を秘めている。
時間によるバックプロパゲーション(BPTT)は、時間とともにRNNをアンロールすることでバックプロパゲーションアルゴリズムを拡張する。
BPTTは、前方と後方のフェーズをインターリーブし、正確な勾配情報を格納する必要があるなど、大きな欠点に悩まされている。
BPTTと競合するRNNにおける摂動学習に対する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-05-14T21:15:29Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
本稿では,ニューラルネットワークのための新しい学習フレームワークであるCascaded Forward(CaFo)アルゴリズムを提案する。
FFとは異なり、我々のフレームワークは各カスケードブロックのラベル分布を直接出力する。
我々のフレームワークでは、各ブロックは独立して訓練できるので、並列加速度システムに容易に展開できる。
論文 参考訳(メタデータ) (2023-03-17T02:01:11Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Scaling Forward Gradient With Local Losses [117.22685584919756]
フォワード学習は、ディープニューラルネットワークを学ぶためのバックプロップに代わる生物学的に妥当な代替手段である。
重みよりも活性化に摂動を適用することにより、前方勾配のばらつきを著しく低減できることを示す。
提案手法はMNIST と CIFAR-10 のバックプロップと一致し,ImageNet 上で提案したバックプロップフリーアルゴリズムよりも大幅に優れていた。
論文 参考訳(メタデータ) (2022-10-07T03:52:27Z) - Solving Sparse Linear Inverse Problems in Communication Systems: A Deep
Learning Approach With Adaptive Depth [51.40441097625201]
疎信号回復問題に対するエンドツーエンドの訓練可能なディープラーニングアーキテクチャを提案する。
提案手法は,出力するレイヤ数を学習し,各タスクのネットワーク深さを推論フェーズで動的に調整する。
論文 参考訳(メタデータ) (2020-10-29T06:32:53Z) - Taming neural networks with TUSLA: Non-convex learning via adaptive
stochastic gradient Langevin algorithms [0.0]
我々は問題ランゲダイナミクス(SGLD)に基づく適切に構築された勾配アルゴリズムを提案する。
また、新しいアルゴリズムの収束特性の利用に関する漸近解析も提供する。
TUSLAアルゴリズムのルーツは、カプタメド・エウラーの発達係数を持つテーミングプロセスに基づいている。
論文 参考訳(メタデータ) (2020-06-25T16:06:22Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z) - Tune smarter not harder: A principled approach to tuning learning rates
for shallow nets [13.203765985718201]
浅いフィードフォワードニューラルネットワークに対して,学習率を選択するための原則的アプローチを提案する。
シミュレーションにより,提案手法が既存のチューニング手法よりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2020-03-22T09:38:35Z) - DDPNOpt: Differential Dynamic Programming Neural Optimizer [29.82841891919951]
トレーニングのための最も広く使われているアルゴリズムは、差分動的プログラミング(DDP)とリンク可能であることを示す。
本稿では,フィードフォワードと畳み込みネットワークをトレーニングするためのDDPOptの新たなクラスを提案する。
論文 参考訳(メタデータ) (2020-02-20T15:42:15Z) - Semi-Implicit Back Propagation [1.5533842336139065]
ニューラルネットワークトレーニングのための半単純バック伝搬法を提案する。
ニューロンの差は後方方向に伝播し、パラメータは近位写像で更新される。
MNISTとCIFAR-10の両方の実験により、提案アルゴリズムは損失減少とトレーニング/検証の精度の両方において、より良い性能をもたらすことが示された。
論文 参考訳(メタデータ) (2020-02-10T03:26:09Z) - Large Batch Training Does Not Need Warmup [111.07680619360528]
大きなバッチサイズを使用してディープニューラルネットワークをトレーニングすることは、有望な結果を示し、多くの現実世界のアプリケーションに利益をもたらしている。
本稿では,大規模バッチ学習のための全層適応レートスケーリング(CLARS)アルゴリズムを提案する。
分析に基づいて,このギャップを埋め,3つの一般的な大規模バッチトレーニング手法の理論的洞察を提示する。
論文 参考訳(メタデータ) (2020-02-04T23:03:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。