Entanglement in bipartite quantum systems: Euclidean volume ratios and
detectability by Bell inequalities
- URL: http://arxiv.org/abs/2102.00312v4
- Date: Wed, 6 Jul 2022 07:54:17 GMT
- Title: Entanglement in bipartite quantum systems: Euclidean volume ratios and
detectability by Bell inequalities
- Authors: A. Sauer, J. Z. Bern\'ad, H. J. Moreno, G. Alber
- Abstract summary: Euclidean volume ratios between quantum states with positive partial transpose and all quantum states in bipartite systems are investigated.
A new numerical approach is developed to explore the typicality of entanglement and of its detectability by Bell inequalities.
It is investigated quantitatively to which extent a combined test of both Bell inequalities can increase the detectability of entanglement beyond what is achievable by each of these inequalities separately.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Euclidean volume ratios between quantum states with positive partial
transpose and all quantum states in bipartite systems are investigated. These
ratios allow a quantitative exploration of the typicality of entanglement and
of its detectability by Bell inequalities. For this purpose a new numerical
approach is developed. It is based on the Peres-Horodecki criterion, on a
characterization of the convex set of quantum states by inequalities resulting
from Newton identities and from Descartes' rule of signs, and on a numerical
approach involving the multiphase Monte Carlo method and the hit-and-run
algorithm. This approach confirms not only recent analytical and numerical
results on two-qubit, qubit--qutrit, and qubit--four-level qudit states but
also allows for a numerically reliable numerical treatment of so far unexplored
qutrit--qutrit states. Based on this numerical approach with the help of the
Clauser-Horne-Shimony-Holt inequality and the Collins-Gisin inequality the
degree of detectability of entanglement is investigated for two-qubit quantum
states. It is investigated quantitatively to which extent a combined test of
both Bell inequalities can increase the detectability of entanglement beyond
what is achievable by each of these inequalities separately.
Related papers
- Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - (Almost-)Quantum Bell Inequalities and Device-Independent Applications [3.7482527016282963]
We present families of (almost)quantum Bell inequalities and highlight three foundational and DI applications.
We derive quantum Bell inequalities that show a separation of the quantum boundary from certain portions of the no-signaling boundary of dimension up to 4k-8.
We provide the most precise characterization of the quantum boundary known so far.
arXiv Detail & Related papers (2023-09-12T15:13:02Z) - Tsirelson inequalities: Detecting cheating and quantumness in a single framework [0.0]
Tsirelson inequalities have emerged as a powerful tool in quantum theory to detect quantumness.
In this paper we harness the versatility of Tsirelson inequalities to address two distinct problems: detecting cheating in classic shell games and probing quantumness in spatially separated systems.
arXiv Detail & Related papers (2023-08-31T09:08:43Z) - Exploring Bell inequalities and quantum entanglement in vector boson
scattering [0.21756081703275998]
The entanglement and violation of Bell inequalities are explored in this paper.
The aim of this work is to determine the regions of the phase space where the final vector bosons after the scattering result entangled.
arXiv Detail & Related papers (2023-06-29T18:29:31Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Numerical estimation of reachable and controllability sets for a
two-level open quantum system driven by coherent and incoherent controls [77.34726150561087]
The article considers a two-level open quantum system governed by the Gorini--Kossakowski--Lindblad--Sudarshan master equation.
The system is analyzed using Bloch parametrization of the system's density matrix.
arXiv Detail & Related papers (2021-06-18T14:23:29Z) - Quantum coherence, correlations and nonclassical states in the two-qubit
Rabi model with parametric oscillator [0.0]
Quantum coherence and quantum correlations are studied in a strongly interacting system composed of two qubits and a parametric medium.
We employ the adiabatic approximation approach to analytically solve the system.
The reconstructed states are observed to be nearly pure generalized Bell states.
arXiv Detail & Related papers (2021-06-12T11:16:40Z) - Quantum Discrimination of Two Noisy Displaced Number States [68.2727599930504]
We first consider the quantum discrimination of two noiseless displaced number states.
We then address the problem of discriminating between two noisy displaced number states.
arXiv Detail & Related papers (2020-12-09T16:56:16Z) - Intrinsic degree of coherence of two-qubit states and measures of
two-particle quantum correlations [0.0]
A basis-invariant measure of coherence known as the intrinsic degree of coherence has been established for classical and single-particle quantum states.
We show that the intrinsic degree of coherence of a two-qubit state puts an upper bound on the violations of Bell inequalities.
We show that the range of values that the concurrence of a two-qubit state can take is decided by the intrinsic degree of coherence of the two-qubit state.
arXiv Detail & Related papers (2020-03-06T04:45:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.