A superconductor free of quasiparticles for seconds
- URL: http://arxiv.org/abs/2102.00484v2
- Date: Tue, 5 Jul 2022 11:06:37 GMT
- Title: A superconductor free of quasiparticles for seconds
- Authors: E. T. Mannila, P. Samuelsson, S. Simbierowicz, J. T. Peltonen, V.
Vesterinen, L. Gr\"onberg, J. Hassel, V. F. Maisi, J. P. Pekola
- Abstract summary: We experimentally demonstrate a superconductor completely free of quasiparticles for periods lasting up to seconds.
Our results demonstrate the possibility of operating devices without quasiparticles with potentially improved performance.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Superconducting devices, based on the Cooper pairing of electrons, play an
important role in existing and emergent technologies, ranging from radiation
detectors to quantum computers. Their performance is limited by spurious
quasiparticle excitations formed from broken Cooper pairs. Efforts to achieve
ultra-low quasiparticle densities have reached time-averaged numbers of
excitations on the order of one in state-of-the-art devices. However, the
dynamics of the quasiparticle population as well as the time scales for adding
and removing individual excitations remain largely unexplored. Here, we
experimentally demonstrate a superconductor completely free of quasiparticles
for periods lasting up to seconds. We monitor the quasiparticle number on a
mesoscopic superconductor in real time by measuring the charge tunneling to a
normal metal contact. Quiet, excitation-free periods are interrupted by
random-in-time Cooper pair breaking events, followed by a burst of charge
tunneling within a millisecond. Our results demonstrate the possibility of
operating devices without quasiparticles with potentially improved performance.
In addition, our experiment probes the origins of nonequilibrium quasiparticles
in our device; the decay of the Cooper pair breaking rate over several weeks
following the initial cooldown rules out processes arising from cosmic or
long-lived radioactive sources.
Related papers
- Enhanced Quasiparticle Relaxation in a Superconductor via the Proximity Effect [3.2635025659132166]
We study the impact of a proximity layer on the transport of quasiparticles in a superconductor.
We find that a normal metal layer can be used to significantly increase the relaxation rate of quasiparticles in a superconductor.
arXiv Detail & Related papers (2024-09-08T22:12:20Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Engineering superconducting qubits to reduce quasiparticles and charge
noise [14.613106897690752]
We experimentally demonstrate how to control quasiparticle generation by downsizing the qubit.
We shape the electromagnetic environment of the qubit above the superconducting gap, inhibiting quasiparticle poisoning.
Our findings support the hypothesis that quasiparticle generation is dominated by the breaking of Cooper pairs at the junction.
arXiv Detail & Related papers (2022-02-03T06:40:21Z) - Continuous Real-Time Detection of Quasiparticle Trapping in Aluminum
Nanobridge Josephson Junctions [5.912792105701256]
Nonequilibrium quasiparticles are ubiquitous in superconducting electronics.
We characterize a quasiparticle trapping detector device based on a two-junction aluminum nanobridge superconducting quantum interference device incorporated into a transmission-line resonator.
We demonstrate continuous detection of up to 3 trapped quasiparticles, with detection of a trapped quasiparticle with signal-to-noise ratio of 27 in 5 $mu$s.
arXiv Detail & Related papers (2021-07-15T05:09:25Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Coherent superconducting qubits from a subtractive junction fabrication
process [48.7576911714538]
Josephson tunnel junctions are the centerpiece of almost any superconducting electronic circuit, including qubits.
In recent years, sub-micron scale overlap junctions have started to attract attention.
This work paves the way towards a more standardized process flow with advanced materials and growth processes, and constitutes an important step for large scale fabrication of superconducting quantum circuits.
arXiv Detail & Related papers (2020-06-30T14:52:14Z) - The limit of spin lifetime in solid-state electronic spins [77.34726150561087]
We provide a complete first-principles picture of spin relaxation that includes up to two-phonon processes.
We study a vanadium-based molecular qubit and reveal that the spin lifetime at high temperature is limited by Raman processes.
arXiv Detail & Related papers (2020-04-08T14:27:36Z) - Impact of ionizing radiation on superconducting qubit coherence [43.13648171914508]
We show that environmental radioactive materials and cosmic rays contribute to an elevated quasiparticle density that would limit superconducting qubits of the type measured here to coherence times in the millisecond regime.
Introducing radiation shielding reduces the flux of ionizing radiation and positively correlates with increased coherence time.
arXiv Detail & Related papers (2020-01-24T20:59:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.