Classifications based on response times for detecting early-stage
Alzheimer's disease
- URL: http://arxiv.org/abs/2102.00738v1
- Date: Mon, 1 Feb 2021 10:08:08 GMT
- Title: Classifications based on response times for detecting early-stage
Alzheimer's disease
- Authors: Alain Petrowski (TSP, RS2M)
- Abstract summary: This paper mainly describes a way to detect with high accuracy patients with early-stage Alzheimer's disease (ES-AD) versus healthy control (HC) subjects.
The solution presented in this paper makes two or even four times fewer errors than the best results of the state of the art concerning the classification HC/ES-AD from handwriting and drawing tasks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Introduction: This paper mainly describes a way to detect with high accuracy
patients with early-stage Alzheimer's disease (ES-AD) versus healthy control
(HC) subjects, from datasets built with handwriting and drawing task records.
Method: The proposed approach uses subject's response times. An optimal subset
of tasks is first selected with a "Support Vector Machine" (SVM) associated
with a grid search. Mixtures of Gaussian distributions defined in the space of
task durations are then used to reproduce and explain the results of the SVM.
Finally, a surprisingly simple and efficient ad hoc classification algorithm is
deduced from the Gaussian mixtures. Results: The solution presented in this
paper makes two or even four times fewer errors than the best results of the
state of the art concerning the classification HC/ES-AD from handwriting and
drawing tasks. Discussion: The best SVM learning model reaches a high accuracy
for this classification but its learning capacity is too large to ensure a low
overfitting risk regarding the small size of the dataset. The proposed ad hoc
classification algorithm only requires to optimize three real-parameters. It
should therefore benefit from a good generalization ability.
Related papers
- An Evaluation of Machine Learning Approaches for Early Diagnosis of
Autism Spectrum Disorder [0.0]
Autistic Spectrum Disorder (ASD) is a neurological disease characterized by difficulties with social interaction, communication, and repetitive activities.
This study employs diverse machine learning methods to identify crucial ASD traits, aiming to enhance and automate the diagnostic process.
arXiv Detail & Related papers (2023-09-20T21:23:37Z) - A Novel Dataset and a Deep Learning Method for Mitosis Nuclei
Segmentation and Classification [10.960222475663006]
Mitosis nuclei count is one of the important indicators for the pathological diagnosis of breast cancer.
We propose a two-stage mitosis segmentation and classification method, named SCMitosis.
The proposed model is verified on the ICPR 2012 dataset, and the highest F-score value of 0.8687 is obtained.
arXiv Detail & Related papers (2022-12-27T08:12:42Z) - Compound Batch Normalization for Long-tailed Image Classification [77.42829178064807]
We propose a compound batch normalization method based on a Gaussian mixture.
It can model the feature space more comprehensively and reduce the dominance of head classes.
The proposed method outperforms existing methods on long-tailed image classification.
arXiv Detail & Related papers (2022-12-02T07:31:39Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD) aims to discover novel categories in unlabelled datasets using knowledge learned from labelled samples.
We investigate the failure of parametric classifiers, verify the effectiveness of previous design choices when high-quality supervision is available, and identify unreliable pseudo-labels as a key problem.
We propose a simple yet effective parametric classification method that benefits from entropy regularisation, achieves state-of-the-art performance on multiple GCD benchmarks and shows strong robustness to unknown class numbers.
arXiv Detail & Related papers (2022-11-21T18:47:11Z) - New wrapper method based on normalized mutual information for dimension
reduction and classification of hyperspectral images [0.0]
We propose a new wrapper method based on normalized mutual information (NMI) and error probability (PE)
Experiments have been performed on two challenging hyperspectral benchmarks datasets captured by the NASA's Airborne Visible/Infrared Imaging Spectrometer Sensor (AVIRIS)
arXiv Detail & Related papers (2022-10-25T21:17:11Z) - Robust self-healing prediction model for high dimensional data [0.685316573653194]
This work proposes a robust self healing (RSH) hybrid prediction model.
It functions by using the data in its entirety by removing errors and inconsistencies from it rather than discarding any data.
The proposed method is compared with some of the existing high performing models and the results are analyzed.
arXiv Detail & Related papers (2022-10-04T17:55:50Z) - Riemannian classification of EEG signals with missing values [67.90148548467762]
This paper proposes two strategies to handle missing data for the classification of electroencephalograms.
The first approach estimates the covariance from imputed data with the $k$-nearest neighbors algorithm; the second relies on the observed data by leveraging the observed-data likelihood within an expectation-maximization algorithm.
As results show, the proposed strategies perform better than the classification based on observed data and allow to keep a high accuracy even when the missing data ratio increases.
arXiv Detail & Related papers (2021-10-19T14:24:50Z) - Learning Gaussian Mixtures with Generalised Linear Models: Precise
Asymptotics in High-dimensions [79.35722941720734]
Generalised linear models for multi-class classification problems are one of the fundamental building blocks of modern machine learning tasks.
We prove exacts characterising the estimator in high-dimensions via empirical risk minimisation.
We discuss how our theory can be applied beyond the scope of synthetic data.
arXiv Detail & Related papers (2021-06-07T16:53:56Z) - Brain Tumor Detection and Classification based on Hybrid Ensemble
Classifier [0.6091702876917281]
We propose a hybrid ensemble method using Random Forest (RF), K-Nearest Neighbour, and Decision Tree (DT) (KNN-RF-DT) based on Majority Voting Method.
It aims to calculate the area of the tumor region and classify brain tumors as benign and malignant.
Our proposed method is tested upon dataset of 2556 images, which are used in 85:15 for training and testing respectively and gives good accuracy of 97.305%.
arXiv Detail & Related papers (2021-01-01T11:52:29Z) - Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies
on Medical Image Classification [63.44396343014749]
We propose a new margin-based surrogate loss function for the AUC score.
It is more robust than the commonly used.
square loss while enjoying the same advantage in terms of large-scale optimization.
To the best of our knowledge, this is the first work that makes DAM succeed on large-scale medical image datasets.
arXiv Detail & Related papers (2020-12-06T03:41:51Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.