Machine learning pipeline for battery state of health estimation
- URL: http://arxiv.org/abs/2102.00837v1
- Date: Mon, 1 Feb 2021 13:50:56 GMT
- Title: Machine learning pipeline for battery state of health estimation
- Authors: Darius Roman, Saurabh Saxena, Valentin Robu, Michael Pecht and David
Flynn
- Abstract summary: We design and evaluate a machine learning pipeline for estimation of battery capacity fade.
The pipeline estimates battery SOH with an associated confidence interval by using two parametric and two non-parametric algorithms.
When deployed on cells operated under the fast-charging protocol, the best model achieves a root mean squared percent error of 0.45%.
- Score: 3.0238880199349834
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lithium-ion batteries are ubiquitous in modern day applications ranging from
portable electronics to electric vehicles. Irrespective of the application,
reliable real-time estimation of battery state of health (SOH) by on-board
computers is crucial to the safe operation of the battery, ultimately
safeguarding asset integrity. In this paper, we design and evaluate a machine
learning pipeline for estimation of battery capacity fade - a metric of battery
health - on 179 cells cycled under various conditions. The pipeline estimates
battery SOH with an associated confidence interval by using two parametric and
two non-parametric algorithms. Using segments of charge voltage and current
curves, the pipeline engineers 30 features, performs automatic feature
selection and calibrates the algorithms. When deployed on cells operated under
the fast-charging protocol, the best model achieves a root mean squared percent
error of 0.45\%. This work provides insights into the design of scalable
data-driven models for battery SOH estimation, emphasising the value of
confidence bounds around the prediction. The pipeline methodology combines
experimental data with machine learning modelling and can be generalized to
other critical components that require real-time estimation of SOH.
Related papers
- Driving behavior-guided battery health monitoring for electric vehicles
using machine learning [7.6366651125971945]
We propose a feature-based machine learning pipeline for reliable battery health monitoring.
We first summarized and analyzed various individual health indicators (HIs) with mechanism-related interpretations.
All features were carefully evaluated and screened based on estimation accuracy and correlation analysis.
arXiv Detail & Related papers (2023-09-25T13:24:53Z) - DIICAN: Dual Time-scale State-Coupled Co-estimation of SOC, SOH and RUL
for Lithium-Ion Batteries [6.930255986517943]
A state-coupled co-estimation method named Deep Inter and Intra-Cycle Attention Network (DIICAN) is proposed in this paper.
The DIICAN method is validated on the Oxford battery dataset.
arXiv Detail & Related papers (2022-10-20T14:42:20Z) - Transfer Learning and Vision Transformer based State-of-Health
prediction of Lithium-Ion Batteries [1.2468700211588883]
Accurately predicting the state of health (SOH) can not only ease the anxiety of users about the battery life but also provide important information for the management of the battery.
This paper presents a prediction method for SOH based on Vision Transformer (ViT) model.
arXiv Detail & Related papers (2022-09-07T16:54:15Z) - Transfer Learning-based State of Health Estimation for Lithium-ion
Battery with Cycle Synchronization [16.637948430296227]
Accurately estimating a battery's state of health (SOH) helps prevent battery-powered applications from failing unexpectedly.
With the superiority of reducing the data requirement of model training for new batteries, transfer learning (TL) emerges as a promising machine learning approach.
This paper proposes an interpretable TL-based SOH estimation method by exploiting the temporal dynamic to assist transfer learning.
arXiv Detail & Related papers (2022-08-23T21:40:40Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
Avoiding over-pressurization in subsurface reservoirs is critical for applications like CO2 sequestration and wastewater injection.
Managing the pressures by controlling injection/extraction are challenging because of complex heterogeneity in the subsurface.
We use differentiable programming with a full-physics model and machine learning to determine the fluid extraction rates that prevent over-pressurization.
arXiv Detail & Related papers (2022-06-21T20:38:13Z) - Dynaformer: A Deep Learning Model for Ageing-aware Battery Discharge
Prediction [2.670887944566458]
We introduce a novel Transformer-based deep learning architecture which is able to simultaneously infer the ageing state from a limited number of voltage/current samples.
Our experiments show that the trained model is effective for input current profiles of different complexities and is robust to a wide range of degradation levels.
arXiv Detail & Related papers (2022-06-01T15:31:06Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
We propose an enhanced version of the physics-constrained deep neural network (PCDNN) approach to provide high-accuracy voltage predictions.
The ePCDNN can accurately capture the voltage response throughout the charge--discharge cycle, including the tail region of the voltage discharge curve.
arXiv Detail & Related papers (2022-03-03T19:56:24Z) - Physics-constrained deep neural network method for estimating parameters
in a redox flow battery [68.8204255655161]
We present a physics-constrained deep neural network (PCDNN) method for parameter estimation in the zero-dimensional (0D) model of the vanadium flow battery (VRFB)
We show that the PCDNN method can estimate model parameters for a range of operating conditions and improve the 0D model prediction of voltage.
We also demonstrate that the PCDNN approach has an improved generalization ability for estimating parameter values for operating conditions not used in the training.
arXiv Detail & Related papers (2021-06-21T23:42:58Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
Redox flow batteries (RFBs) offer the capability to store large amounts of energy cheaply and efficiently.
There is a need for fast and accurate models of the charge-discharge curve of a RFB to potentially improve the battery capacity and performance.
We develop a multifidelity model for predicting the charge-discharge curve of a RFB.
arXiv Detail & Related papers (2021-06-17T00:49:55Z) - State-of-Charge Estimation of a Li-Ion Battery using Deep Forward Neural
Networks [68.8204255655161]
We build a Deep Forward Network for a lithium-ion battery and its performance assessment.
The contribution of this work is to present a methodology of building a Deep Forward Network for a lithium-ion battery and its performance assessment.
arXiv Detail & Related papers (2020-09-20T23:47:11Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
Design, analysis, and operation of electric vertical takeoff and landing aircraft (eVTOLs) requires fast and accurate prediction of Li-ion battery performance.
We generate a battery performance and thermal behavior dataset specific to eVTOL duty cycles.
We use this dataset to develop a battery performance and degradation model (Cellfit) which employs physics-informed machine learning.
arXiv Detail & Related papers (2020-07-06T16:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.