Driving behavior-guided battery health monitoring for electric vehicles
using machine learning
- URL: http://arxiv.org/abs/2309.14125v1
- Date: Mon, 25 Sep 2023 13:24:53 GMT
- Title: Driving behavior-guided battery health monitoring for electric vehicles
using machine learning
- Authors: Nanhua Jiang, Jiawei Zhang, Weiran Jiang, Yao Ren, Jing Lin, Edwin
Khoo, Ziyou Song
- Abstract summary: We propose a feature-based machine learning pipeline for reliable battery health monitoring.
We first summarized and analyzed various individual health indicators (HIs) with mechanism-related interpretations.
All features were carefully evaluated and screened based on estimation accuracy and correlation analysis.
- Score: 7.6366651125971945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An accurate estimation of the state of health (SOH) of batteries is critical
to ensuring the safe and reliable operation of electric vehicles (EVs).
Feature-based machine learning methods have exhibited enormous potential for
rapidly and precisely monitoring battery health status. However, simultaneously
using various health indicators (HIs) may weaken estimation performance due to
feature redundancy. Furthermore, ignoring real-world driving behaviors can lead
to inaccurate estimation results as some features are rarely accessible in
practical scenarios. To address these issues, we proposed a feature-based
machine learning pipeline for reliable battery health monitoring, enabled by
evaluating the acquisition probability of features under real-world driving
conditions. We first summarized and analyzed various individual HIs with
mechanism-related interpretations, which provide insightful guidance on how
these features relate to battery degradation modes. Moreover, all features were
carefully evaluated and screened based on estimation accuracy and correlation
analysis on three public battery degradation datasets. Finally, the
scenario-based feature fusion and acquisition probability-based practicality
evaluation method construct a useful tool for feature extraction with
consideration of driving behaviors. This work highlights the importance of
balancing the performance and practicality of HIs during the development of
feature-based battery health monitoring algorithms.
Related papers
- Domain knowledge-guided machine learning framework for state of health estimation in Lithium-ion batteries [0.0]
We propose five health indicators that can be extracted online from real-world electric vehicle operation.
The proposed indicators provide physical insights into the energy and power fade of the battery.
They can be computed for portions of the charging profile and real-world driving conditions, facilitating real-time battery degradation estimation.
arXiv Detail & Related papers (2024-09-22T19:39:53Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - A Hybrid Probabilistic Battery Health Management Approach for Robust Inspection Drone Operations [0.0]
Inspection drones are ubiquitous assets that enhance the reliability of critical infrastructures through improved accessibility.
The battery is a key component that determines the overall reliability of the inspection drones and contributes to reliable and robust inspections.
This paper presents a novel hybrid probabilistic approach for battery end-of-discharge (EOD) voltage prediction of Li-Po batteries.
arXiv Detail & Related papers (2024-04-24T09:22:18Z) - Forecasting Electric Vehicle Battery Output Voltage: A Predictive Modeling Approach [0.0]
The battery management system plays a vital role in ensuring the safety and dependability of electric and hybrid vehicles.
It is responsible for various functions, including state evaluation, monitoring, charge control, and cell balancing, all integrated within the BMS.
arXiv Detail & Related papers (2024-04-08T06:47:03Z) - A Mapping Study of Machine Learning Methods for Remaining Useful Life
Estimation of Lead-Acid Batteries [0.0]
State of Health (SoH) and Remaining Useful Life (RUL) contribute to enhancing predictive maintenance, reliability, and longevity of battery systems.
This paper presents a mapping study of the state-of-the-art in machine learning methods for estimating the SoH and RUL of lead-acid batteries.
arXiv Detail & Related papers (2023-07-11T10:41:41Z) - Control-Aware Prediction Objectives for Autonomous Driving [78.19515972466063]
We present control-aware prediction objectives (CAPOs) to evaluate the downstream effect of predictions on control without requiring the planner be differentiable.
We propose two types of importance weights that weight the predictive likelihood: one using an attention model between agents, and another based on control variation when exchanging predicted trajectories for ground truth trajectories.
arXiv Detail & Related papers (2022-04-28T07:37:21Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
This paper proposes a novel solution to range anxiety based on a federated-learning model.
It is capable of estimating battery consumption and providing energy-efficient route planning for vehicle networks.
arXiv Detail & Related papers (2021-11-13T15:03:44Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
We propose efficient mechanisms to characterize and generate testing scenarios using a state-of-the-art driving simulator.
We use our method to characterize real driving data from the Next Generation Simulation (NGSIM) project.
We rank the scenarios by defining metrics based on the complexity of avoiding accidents and provide insights into how the AV could have minimized the probability of incurring an accident.
arXiv Detail & Related papers (2021-03-12T17:00:23Z) - Improving Robustness of Learning-based Autonomous Steering Using
Adversarial Images [58.287120077778205]
We introduce a framework for analyzing robustness of the learning algorithm w.r.t varying quality in the image input for autonomous driving.
Using the results of sensitivity analysis, we propose an algorithm to improve the overall performance of the task of "learning to steer"
arXiv Detail & Related papers (2021-02-26T02:08:07Z) - Machine learning pipeline for battery state of health estimation [3.0238880199349834]
We design and evaluate a machine learning pipeline for estimation of battery capacity fade.
The pipeline estimates battery SOH with an associated confidence interval by using two parametric and two non-parametric algorithms.
When deployed on cells operated under the fast-charging protocol, the best model achieves a root mean squared percent error of 0.45%.
arXiv Detail & Related papers (2021-02-01T13:50:56Z) - Interpretable Off-Policy Evaluation in Reinforcement Learning by
Highlighting Influential Transitions [48.91284724066349]
Off-policy evaluation in reinforcement learning offers the chance of using observational data to improve future outcomes in domains such as healthcare and education.
Traditional measures such as confidence intervals may be insufficient due to noise, limited data and confounding.
We develop a method that could serve as a hybrid human-AI system, to enable human experts to analyze the validity of policy evaluation estimates.
arXiv Detail & Related papers (2020-02-10T00:26:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.