A probabilistic Taylor expansion with Gaussian processes
- URL: http://arxiv.org/abs/2102.00877v2
- Date: Mon, 28 Aug 2023 07:41:55 GMT
- Title: A probabilistic Taylor expansion with Gaussian processes
- Authors: Toni Karvonen, Jon Cockayne, Filip Tronarp, Simo S\"arkk\"a
- Abstract summary: We study a class of Gaussian processes for which the posterior mean, for a particular choice of data, replicates a truncated Taylor expansion of any order.
We discuss and prove some results on maximum likelihood estimation of parameters of Taylor kernels.
- Score: 8.840147522046651
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study a class of Gaussian processes for which the posterior mean, for a
particular choice of data, replicates a truncated Taylor expansion of any
order. The data consist of derivative evaluations at the expansion point and
the prior covariance kernel belongs to the class of Taylor kernels, which can
be written in a certain power series form. We discuss and prove some results on
maximum likelihood estimation of parameters of Taylor kernels. The proposed
framework is a special case of Gaussian process regression based on data that
is orthogonal in the reproducing kernel Hilbert space of the covariance kernel.
Related papers
- Highly Adaptive Ridge [84.38107748875144]
We propose a regression method that achieves a $n-2/3$ dimension-free L2 convergence rate in the class of right-continuous functions with square-integrable sectional derivatives.
Har is exactly kernel ridge regression with a specific data-adaptive kernel based on a saturated zero-order tensor-product spline basis expansion.
We demonstrate empirical performance better than state-of-the-art algorithms for small datasets in particular.
arXiv Detail & Related papers (2024-10-03T17:06:06Z) - von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
We explore a family of expressive and interpretable distributions over circle-valued random functions.
The resulting probability model has connections with continuous spin models in statistical physics.
For posterior inference, we introduce a new Stratonovich-like augmentation that lends itself to fast Markov Chain Monte Carlo sampling.
arXiv Detail & Related papers (2024-06-19T01:57:21Z) - On the Approximation of Kernel functions [0.0]
The paper addresses approximations of the kernel itself.
For the Hilbert Gauss kernel on the unit cube, the paper establishes an upper bound of the associated eigenfunctions.
This improvement confirms low rank approximation methods such as the Nystr"om method.
arXiv Detail & Related papers (2024-03-11T13:50:07Z) - Gaussian Process Regression under Computational and Epistemic Misspecification [4.5656369638728656]
In large data applications, computational costs can be reduced using low-rank or sparse approximations of the kernel.
This paper investigates the effect of such kernel approximations on the element error.
arXiv Detail & Related papers (2023-12-14T18:53:32Z) - Wiener Chaos in Kernel Regression: Towards Untangling Aleatoric and Epistemic Uncertainty [0.0]
We generalize the setting and consider kernel ridge regression with additive i.i.d. nonGaussian measurement noise.
We show that our approach allows us to distinguish the uncertainty that stems from the noise in the data samples from the total uncertainty encoded in the GP posterior distribution.
arXiv Detail & Related papers (2023-12-12T16:02:35Z) - Gaussian Processes on Distributions based on Regularized Optimal
Transport [2.905751301655124]
We present a novel kernel over the space of probability measures based on the dual formulation of optimal regularized transport.
We prove that this construction enables to obtain a valid kernel, by using the Hilbert norms.
We provide theoretical guarantees on the behaviour of a Gaussian process based on this kernel.
arXiv Detail & Related papers (2022-10-12T20:30:23Z) - Experimental Design for Linear Functionals in Reproducing Kernel Hilbert
Spaces [102.08678737900541]
We provide algorithms for constructing bias-aware designs for linear functionals.
We derive non-asymptotic confidence sets for fixed and adaptive designs under sub-Gaussian noise.
arXiv Detail & Related papers (2022-05-26T20:56:25Z) - Gaussian Processes and Statistical Decision-making in Non-Euclidean
Spaces [96.53463532832939]
We develop techniques for broadening the applicability of Gaussian processes.
We introduce a wide class of efficient approximations built from this viewpoint.
We develop a collection of Gaussian process models over non-Euclidean spaces.
arXiv Detail & Related papers (2022-02-22T01:42:57Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
We use kernel Hilbert spaces for estimating the value function of an infinite-horizon discounted Markov reward process.
We derive a non-asymptotic upper bound on the error with explicit dependence on the eigenvalues of the associated kernel operator.
We prove minimax lower bounds over sub-classes of MRPs.
arXiv Detail & Related papers (2021-09-24T14:48:20Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - Advanced Stationary and Non-Stationary Kernel Designs for Domain-Aware
Gaussian Processes [0.0]
We propose advanced kernel designs that only allow for functions with certain desirable characteristics to be elements of the reproducing kernel Hilbert space (RKHS)
We will show the impact of advanced kernel designs on Gaussian processes using several synthetic and two scientific data sets.
arXiv Detail & Related papers (2021-02-05T22:07:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.