論文の概要: SJ_AJ@DravidianLangTech-EACL2021: Task-Adaptive Pre-Training of
Multilingual BERT models for Offensive Language Identification
- arxiv url: http://arxiv.org/abs/2102.01051v1
- Date: Mon, 1 Feb 2021 18:41:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-02 16:45:56.108609
- Title: SJ_AJ@DravidianLangTech-EACL2021: Task-Adaptive Pre-Training of
Multilingual BERT models for Offensive Language Identification
- Title(参考訳): SJ_AJ@DravidianLangTech-EACL2021: 攻撃言語識別のための多言語BERTモデルのタスク適応事前訓練
- Authors: Sai Muralidhar Jayanthi, Akshat Gupta
- Abstract要約: 我々は、ドラヴィダ語における攻撃的言語識別に関するEACL 2021-Shared Taskを提出する。
我々の制度はカンナダでは第1位、マラヤラムでは第2位、タミルでは第3位にランクされた。
- 参考スコア(独自算出の注目度): 1.3198689566654105
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we present our submission for the EACL 2021-Shared Task on
Offensive Language Identification in Dravidian languages. Our final system is
an ensemble of mBERT and XLM-RoBERTa models which leverage task-adaptive
pre-training of multilingual BERT models with a masked language modeling
objective. Our system was ranked 1st for Kannada, 2nd for Malayalam and 3rd for
Tamil.
- Abstract(参考訳): 本稿では,ドラビダ語における攻撃的言語識別に関するEACL 2021-Shared Taskを提案する。
私たちの最終システムはmBERTとXLM-RoBERTaモデルのアンサンブルであり、マスク付き言語モデリング目的の多言語BERTモデルのタスク適応事前トレーニングを利用しています。
私たちのシステムは、カンナダで1位、マラヤラムで2位、タミルで3位にランクされました。
関連論文リスト
- FinGPT: Large Generative Models for a Small Language [48.46240937758779]
我々は、世界の人口の0.1%未満で話されるフィンランド語のための大きな言語モデル(LLM)を作成します。
我々は、FinGPTと呼ばれる7つの単言語モデル(186Mから13Bパラメータ)をスクラッチからトレーニングする。
我々は、元のトレーニングデータとフィンランド語を混合した多言語BLOOMモデルの事前訓練を継続し、その結果、176億のパラメータモデルをBLUUMIと呼ぶ。
論文 参考訳(メタデータ) (2023-11-03T08:05:04Z) - PolyLM: An Open Source Polyglot Large Language Model [57.64420154135178]
我々は6400億(B)トークンでトレーニングされた多言語大言語モデル(LLM)であるPolyLMについて述べる。
その多言語的能力を高めるために,1) バイリンガルデータをトレーニングデータに統合し,2) 事前学習中に英語以外のデータの比率を30%から60%に引き上げるカリキュラム学習戦略を採用する。
さらに,モデル微調整のために,132.7Kの多言語命令を自動的に生成する多言語自己指示手法を提案する。
論文 参考訳(メタデータ) (2023-07-12T09:00:37Z) - SheffieldVeraAI at SemEval-2023 Task 3: Mono and multilingual approaches
for news genre, topic and persuasion technique classification [3.503844033591702]
本稿では,SemEval-2023 Task 3: Finding the category, the framing, and the Persuasion Technique in online news in a multi-lingual setup。
論文 参考訳(メタデータ) (2023-03-16T15:54:23Z) - L3Cube-HindBERT and DevBERT: Pre-Trained BERT Transformer models for
Devanagari based Hindi and Marathi Languages [1.14219428942199]
ヒンディー語単言語コーパスで事前学習したヒンディー語 BERT モデル L3Cube-HindBERT について述べる。
私たちは、MarathiとHindiのモノリンガルデータセットに基づいてトレーニングされたDevanagari BERTモデルであるDevBERTをリリースします。
論文 参考訳(メタデータ) (2022-11-21T13:02:52Z) - Generalizing Multimodal Pre-training into Multilingual via Language
Acquisition [54.69707237195554]
英語のVision-Language Pre-Trainingは、様々な下流タスクで大きな成功を収めた。
この成功を英語以外の言語に一般化するために、Multilingual Vision-Language Pre-Trainingを通じていくつかの取り組みがなされている。
単言語視覚言語事前学習モデルを多言語に容易に一般化できるtextbfMultitextbfLingual textbfAcquisition (MLA) フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-29T08:53:22Z) - UC2: Universal Cross-lingual Cross-modal Vision-and-Language
Pre-training [52.852163987208826]
UC2は、言語間クロスモーダル表現学習のための最初の機械翻訳拡張フレームワークである。
Masked Region-token Modeling (MRTM) と Visual Translation Language Modeling (VTLM) の2つの新しいプリトレーニングタスクを提案する。
提案手法は,英語タスクにおける単言語学習モデルと同等の性能を維持しつつ,多種多様な非英語ベンチマークで新たな最先端を実現する。
論文 参考訳(メタデータ) (2021-04-01T08:30:53Z) - Hate-Alert@DravidianLangTech-EACL2021: Ensembling strategies for
Transformer-based Offensive language Detection [5.139400587753555]
ソーシャルメディアは、しばしば異なる種類の攻撃的コンテンツの繁殖地として機能する。
我々は、異なるトランスモデルを徹底的に探索し、異なるモデルを統合する遺伝的アルゴリズムも提供する。
タミル語では第1位,カンナダ語では第2位,マラヤラム語のサブタスクでは第1位を確保した。
論文 参考訳(メタデータ) (2021-02-19T18:35:38Z) - indicnlp@kgp at DravidianLangTech-EACL2021: Offensive Language
Identification in Dravidian Languages [0.0]
この論文は、チーム indicnlp@kgp の EACL 2021 共有タスク「ドラヴィディアン言語における言語識別効果」への提出を提示する。
このタスクは、異なる攻撃的コンテンツタイプを3つのコード混合Dravidian言語データセットに分類することを目的としている。
マラヤラム英語,タミル英語,カナダ英語のデータセットでは,平均F1スコア0.97,0.77,0.72が達成された。
論文 参考訳(メタデータ) (2021-02-14T13:24:01Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
マルチリンガルBERT(mBERT)やXLM-Rのような多言語言語モデルは、様々なNLPタスクに対して最先端の言語間転送性能を提供する。
キャパシティの制限と事前トレーニングデータの大きな差のため、リソース豊富な言語とリソースを対象とする言語には大きなパフォーマンスギャップがある。
本稿では,事前学習した多言語モデルの低リソース言語や未知のスクリプトへの高速かつ効果的な適応を可能にする新しいデータ効率手法を提案する。
論文 参考訳(メタデータ) (2020-12-31T11:37:28Z) - Towards Fully Bilingual Deep Language Modeling [1.3455090151301572]
両言語のパフォーマンスを損なうことなく、2つの遠隔関連言語に対してバイリンガルモデルを事前学習することが可能かを検討する。
フィンランド英語のバイリンガルBERTモデルを作成し、対応するモノリンガルモデルを評価するために使用されるデータセットの性能を評価する。
我々のバイリンガルモデルは、GLUE上のGoogleのオリジナル英語BERTと同等に動作し、フィンランドのNLPタスクにおける単言語フィンランドBERTのパフォーマンスとほぼ一致します。
論文 参考訳(メタデータ) (2020-10-22T12:22:50Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
言語間の要約は、ソース言語の記事に対する対象言語の要約を作成することを目的としている。
本稿では,翻訳のような言語間タスクと,マスク付き言語モデルのようなモノリンガルタスクの両方を活用する混合言語事前学習に基づくソリューションを提案する。
本モデルでは,2.82(中国語)と1.15(中国語,英語)のROUGE-1スコアを最先端の結果に対して改善する。
論文 参考訳(メタデータ) (2020-10-18T00:21:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。