論文の概要: Comparing hundreds of machine learning classifiers and discrete choice models in predicting travel behavior: an empirical benchmark
- arxiv url: http://arxiv.org/abs/2102.01130v2
- Date: Fri, 17 Jan 2025 17:04:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-21 15:53:16.804618
- Title: Comparing hundreds of machine learning classifiers and discrete choice models in predicting travel behavior: an empirical benchmark
- Title(参考訳): 旅行行動予測における数百の機械学習分類器と個別選択モデルの比較--経験的ベンチマーク
- Authors: Shenhao Wang, Baichuan Mo, Yunhan Zheng, Stephane Hess, Jinhua Zhao,
- Abstract要約: 多くの研究は、旅行需要予測において機械学習(ML)と離散選択モデル(DCM)を比較してきた。
これらの研究は、文脈変動を考慮せずに決定論的にモデルを比較するため、一般化性に欠けることが多い。
このベンチマークでは、2つの大規模データソースを比較した。
- 参考スコア(独自算出の注目度): 6.815730801645785
- License:
- Abstract: Numerous studies have compared machine learning (ML) and discrete choice models (DCMs) in predicting travel demand. However, these studies often lack generalizability as they compare models deterministically without considering contextual variations. To address this limitation, our study develops an empirical benchmark by designing a tournament model, thus efficiently summarizing a large number of experiments, quantifying the randomness in model comparisons, and using formal statistical tests to differentiate between the model and contextual effects. This benchmark study compares two large-scale data sources: a database compiled from literature review summarizing 136 experiments from 35 studies, and our own experiment data, encompassing a total of 6,970 experiments from 105 models and 12 model families. This benchmark study yields two key findings. Firstly, many ML models, particularly the ensemble methods and deep learning, statistically outperform the DCM family (i.e., multinomial, nested, and mixed logit models). However, this study also highlights the crucial role of the contextual factors (i.e., data sources, inputs and choice categories), which can explain models' predictive performance more effectively than the differences in model types alone. Model performance varies significantly with data sources, improving with larger sample sizes and lower dimensional alternative sets. After controlling all the model and contextual factors, significant randomness still remains, implying inherent uncertainty in such model comparisons. Overall, we suggest that future researchers shift more focus from context-specific model comparisons towards examining model transferability across contexts and characterizing the inherent uncertainty in ML, thus creating more robust and generalizable next-generation travel demand models.
- Abstract(参考訳): 多くの研究が、旅行需要予測において機械学習(ML)と離散選択モデル(DCM)を比較している。
しかしながら、これらの研究は、文脈変動を考慮せずに決定論的にモデルを比較するため、一般化性に欠けることが多い。
この制限に対処するために,トーナメントモデルを設計し,多数の実験を効率よく要約し,モデル比較におけるランダム性を定量化し,モデルと文脈効果を区別するための公式な統計的テストを用いて,経験的ベンチマークを構築した。
このベンチマーク研究は、35の研究から136の実験を要約した文献レビューから収集したデータベースと、105モデルと12モデルファミリーから合計6,970の実験データを比較した。
このベンチマーク研究は2つの重要な発見をもたらす。
第一に、多くのMLモデル、特にアンサンブル法と深層学習は、統計的にDCMファミリ(マルチノミアル、ネスト、混合ロジットモデル)を上回っている。
しかし、本研究では、モデルの種類のみの違いよりもモデルの性能を効率的に説明できる文脈要因(例えば、データソース、入力、選択カテゴリ)の重要な役割を強調した。
モデルの性能はデータソースによって大きく異なり、より大きなサンプルサイズと低次元の代替セットで改善されている。
すべてのモデルと文脈因子を制御した後も、重要なランダム性は残っており、そのようなモデルの比較に固有の不確かさを示唆している。
全体として、将来の研究者は、コンテキスト固有のモデル比較から、コンテキスト間のモデル転送可能性を調べ、ML固有の不確実性を特徴づけ、より堅牢で一般化可能な次世代の旅行需要モデルを作成することに焦点を移すことを提案する。
関連論文リスト
- Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference [55.150117654242706]
我々は、1.8万のデータポイントでトレーニングされた計算対応GPのモデル選択が、1つのGPU上で数時間以内に可能であることを示す。
この研究の結果、ガウス過程は、不確実性を定量化する能力を著しく妥協することなく、大規模なデータセットで訓練することができる。
論文 参考訳(メタデータ) (2024-11-01T21:11:48Z) - A Lightweight Measure of Classification Difficulty from Application Dataset Characteristics [4.220363193932374]
効率的なコサイン類似度に基づく分類困難度尺度Sを提案する。
データセットのクラス数とクラス内およびクラス間の類似度メトリクスから計算される。
この手法を実践者が、繰り返しトレーニングやテストによって、6倍から29倍の速度で効率の良いモデルを選択するのにどのように役立つかを示す。
論文 参考訳(メタデータ) (2024-04-09T03:27:09Z) - No "Zero-Shot" Without Exponential Data: Pretraining Concept Frequency Determines Multimodal Model Performance [68.18779562801762]
マルチモーダルモデルは、下流の"ゼロショット"のパフォーマンスを線形改善するために、指数関数的に多くのデータを必要とする。
本研究は,大規模な訓練パラダイムの下での「ゼロショット」一般化能力の鍵となる訓練データに対する指数関数的要求を明らかにする。
論文 参考訳(メタデータ) (2024-04-04T17:58:02Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Activity Cliff Prediction: Dataset and Benchmark [20.41770222873952]
本稿ではまず,AC予測のための大規模データセットACNetを紹介する。
ACNetは400K以上のMMP(Matched Molecular Pairs)を190のターゲットに対してキュレートする。
本稿では、深いニューラルネットワークで符号化された分子表現の予測性能を交流予測のためにベンチマークするためのベースラインフレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-15T09:19:07Z) - Approximate Gibbs Sampler for Efficient Inference of Hierarchical Bayesian Models for Grouped Count Data [0.0]
本研究は、推定精度を維持しつつ、HBPRMを効率的に学習するための近似ギブスサンプリング器(AGS)を開発した。
実データと合成データを用いた数値実験により,AGSの優れた性能を示した。
論文 参考訳(メタデータ) (2022-11-28T21:00:55Z) - Performance and Interpretability Comparisons of Supervised Machine
Learning Algorithms: An Empirical Study [3.7881729884531805]
論文は発見に基づく方法で整理され、各セクションが一般的な結論を提供する。
全体として、XGBとFFNNは競争力があり、FFNNはスムーズなモデルでより良いパフォーマンスを示した。
RFは一般には良好に機能せず,文献で確認された。
論文 参考訳(メタデータ) (2022-04-27T12:04:33Z) - Sparse MoEs meet Efficient Ensembles [49.313497379189315]
このようなモデルの2つの一般的なクラス、すなわちニューラルネットワークのアンサンブルと専門家のスパースミックス(スパースMoE)の相互作用について研究する。
Efficient Ensemble of Experts (E$3$)は、両モデルのクラスを最大限に活用するスケーラブルでシンプルなMoEのアンサンブルであり、深いアンサンブルよりも最大45%少ないFLOPを使用する。
論文 参考訳(メタデータ) (2021-10-07T11:58:35Z) - Generalized Matrix Factorization: efficient algorithms for fitting
generalized linear latent variable models to large data arrays [62.997667081978825]
一般化線形潜在変数モデル(GLLVM)は、そのような因子モデルを非ガウス応答に一般化する。
GLLVMのモデルパラメータを推定する現在のアルゴリズムは、集約的な計算を必要とし、大規模なデータセットにスケールしない。
本稿では,GLLVMを高次元データセットに適用するための新しい手法を提案する。
論文 参考訳(メタデータ) (2020-10-06T04:28:19Z) - Fast, Accurate, and Simple Models for Tabular Data via Augmented
Distillation [97.42894942391575]
本研究では、FAST-DADを用いて、任意の複雑なアンサンブル予測を、高木、無作為林、深層ネットワークなどの個々のモデルに抽出する。
我々の個々の蒸留モデルは、H2O/AutoSklearnのようなAutoMLツールが生成するアンサンブル予測よりも10倍高速で精度が高い。
論文 参考訳(メタデータ) (2020-06-25T09:57:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。