論文の概要: A Statistician Teaches Deep Learning
- arxiv url: http://arxiv.org/abs/2102.01194v1
- Date: Fri, 29 Jan 2021 04:59:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-03 16:19:04.394786
- Title: A Statistician Teaches Deep Learning
- Title(参考訳): 統計学者がディープラーニングを教える
- Authors: G. Jogesh Babu, David Banks, Hyunsoon Cho, David Han, Hailin Sang and
Shouyi Wang
- Abstract要約: ディープラーニング(DL)は多くの注目を集め、現代のデータサイエンスでますます人気を博している。
コンピュータ科学者は、深層学習技術の発展を導いたため、考え方と視点は統計学者とは異なってくる可能性がある。
この文化のギャップに対処し、大学院生の統計学にディープラーニングを教えるためのヒントを提供する。
- 参考スコア(独自算出の注目度): 3.1219542318102635
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep learning (DL) has gained much attention and become increasingly popular
in modern data science. Computer scientists led the way in developing deep
learning techniques, so the ideas and perspectives can seem alien to
statisticians. Nonetheless, it is important that statisticians become involved
-- many of our students need this expertise for their careers. In this paper,
developed as part of a program on DL held at the Statistical and Applied
Mathematical Sciences Institute, we address this culture gap and provide tips
on how to teach deep learning to statistics graduate students. After some
background, we list ways in which DL and statistical perspectives differ,
provide a recommended syllabus that evolved from teaching two iterations of a
DL graduate course, offer examples of suggested homework assignments, give an
annotated list of teaching resources, and discuss DL in the context of two
research areas.
- Abstract(参考訳): ディープラーニング(dl)は注目を集め、現代のデータサイエンスでますます人気が高まっている。
コンピュータ科学者はディープラーニング技術の開発を先導し、そのアイデアと視点は統計学者にとって異質に思える。
それでも統計学者が関与することが重要であり、多くの学生がキャリアのためにこの専門知識を必要としています。
本論文では,統計・応用数理科学研究所で開催されたDLプログラムの一環として,この文化格差に対処し,統計大学院生に深層学習を教えるためのヒントを提供する。
若干の背景から,dlと統計的視点の相違点を列挙し,dl大学院の2つのイテレーションの指導から進化した推奨シラバスを提供し,提案課題の例を示し,教材の注釈付きリストを与え,2つの研究領域の文脈でdlを議論する。
関連論文リスト
- Multimodal Lecture Presentations Dataset: Understanding Multimodality in
Educational Slides [57.86931911522967]
学習内容のマルチモーダル理解における機械学習モデルの能力を検証する。
このデータセットには,180時間以上のビデオと9000時間以上のスライドが,各科目から10人の講師が参加している。
マルチモーダル・トランスフォーマーであるPolyViLTを導入する。
論文 参考訳(メタデータ) (2022-08-17T05:30:18Z) - To Know by the Company Words Keep and What Else Lies in the Vicinity [0.0]
本稿では,GloVe や Word2Vec など,セミナルアルゴリズムによって学習された統計データの解析モデルを提案する。
われわれの知る限りでは、Word2Vecのソフトマックス最適化、スキップグラムアルゴリズムの最初の既知のソリューションである。
論文 参考訳(メタデータ) (2022-04-30T03:47:48Z) - Algebraic Learning: Towards Interpretable Information Modeling [0.0]
この論文は、一般的な情報モデリングにおける解釈可能性の問題に対処し、問題を2つの範囲から緩和する試みである。
まず、問題指向の視点を用いて、興味深い数学的性質が自然に現れるモデリング実践に知識を取り入れる。
第二に、訓練されたモデルを考えると、基礎となるシステムに関するさらなる洞察を抽出するために様々な方法を適用することができる。
論文 参考訳(メタデータ) (2022-03-13T15:53:39Z) - Learning Data Teaching Strategies Via Knowledge Tracing [5.648636668261282]
本稿では,学生モデルのためのデータ教育戦略を最適化する,知識強化データ教育(KADT)と呼ばれる新しい手法を提案する。
KADT法は、潜在学習概念の観点から、学生モデルの知識進捗を動的に捉えるための知識追跡モデルを含む。
我々は、知識追跡、感情分析、映画レコメンデーション、画像分類を含む4つの機械学習タスクにおいて、KADT法の性能を評価した。
論文 参考訳(メタデータ) (2021-11-13T10:10:48Z) - DCUR: Data Curriculum for Teaching via Samples with Reinforcement
Learning [6.9884912034790405]
本稿では,オンライン深層学習を用いた教員教育を行うためのフレームワーク,Data CUrriculum for Reinforcement Learning (DCUR)を提案する。
そして、オフラインのRLを実行するか、少量の自己生成データと組み合わせて教師データを使用することで学習する。
論文 参考訳(メタデータ) (2021-09-15T15:39:46Z) - A Survey of Knowledge Tracing [49.79718735483553]
新型コロナウイルスの感染拡大は、オンライン教育の流行を引き起こしている。
オンライン学習プラットフォームを使用して、大量の学習データを記録および研究することが可能になった。
知識追跡(KT)は、学生の進化する知識状態を監視することを目的としている。
論文 参考訳(メタデータ) (2021-05-06T13:05:55Z) - Exploring Bayesian Deep Learning for Urgent Instructor Intervention Need
in MOOC Forums [58.221459787471254]
大規模なオープンオンラインコース(MOOC)は、その柔軟性のおかげで、eラーニングの一般的な選択肢となっている。
多くの学習者とその多様な背景から、リアルタイムサポートの提供は課税されている。
MOOCインストラクターの大量の投稿と高い作業負荷により、インストラクターが介入を必要とするすべての学習者を識別できる可能性は低いです。
本稿では,モンテカルロドロップアウトと変分推論という2つの手法を用いて,学習者によるテキスト投稿のベイジアン深層学習を初めて検討する。
論文 参考訳(メタデータ) (2021-04-26T15:12:13Z) - Graph Self-Supervised Learning: A Survey [73.86209411547183]
SSL(Self-supervised Learning)は、グラフデータの有望でトレンドの学習パラダイムとなっています。
グラフデータにSSL技術を用いた既存のアプローチをタイムリーかつ包括的にレビューします。
論文 参考訳(メタデータ) (2021-02-27T03:04:21Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
パーソナライズ学習の目的は、学習者の強みに合致する効果的な知識獲得トラックをデザインし、目標を達成するために弱みをバイパスすることである。
近年、人工知能(AI)と機械学習(ML)の隆盛は、パーソナライズされた教育を強化するための新しい視点を広げています。
論文 参考訳(メタデータ) (2021-01-19T12:23:32Z) - Semantics of the Black-Box: Can knowledge graphs help make deep learning
systems more interpretable and explainable? [4.2111286819721485]
近年のディープラーニング(DL)の革新は、個人や社会に大きな影響を与える可能性がある。
DLモデルのブラックボックスの性質と大量のデータへの過度依存は、システムの解釈可能性と説明可能性に課題をもたらす。
本稿では,知識グラフとして提供される知識が,知識注入学習を用いたDL手法にどのように組み込まれているかを示す。
論文 参考訳(メタデータ) (2020-10-16T22:55:23Z) - A Survey of Deep Active Learning [54.376820959917005]
アクティブラーニング(AL)は、最も少ないサンプルをマークすることで、モデルの性能向上を最大化しようとする。
ディープラーニング(DL)はデータに対して欲張りであり、大量のパラメータを最適化するために大量のデータ供給を必要とする。
ディープラーニング(Deep Active Learning, DAL)が誕生した。
論文 参考訳(メタデータ) (2020-08-30T04:28:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。