論文の概要: Learning Beyond Pattern Matching? Assaying Mathematical Understanding in LLMs
- arxiv url: http://arxiv.org/abs/2405.15485v1
- Date: Fri, 24 May 2024 12:04:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 14:32:33.208547
- Title: Learning Beyond Pattern Matching? Assaying Mathematical Understanding in LLMs
- Title(参考訳): パターンマッチングを超えた学習 : LLMにおける数学的理解の検証
- Authors: Siyuan Guo, Aniket Didolkar, Nan Rosemary Ke, Anirudh Goyal, Ferenc Huszár, Bernhard Schölkopf,
- Abstract要約: 本稿では,LLMのドメイン知識を,問題解決に必要な数学的スキルの理解を通じて評価する。
汎用科学アシスタントとしてLLMを用いることで, LLMの確率分布の変化を評価するためにtextitNTKEvalを提案する。
系統的な分析では、文脈内学習中にドメイン理解の証拠が見つかる。
ある命令チューニングは、異なるデータでのトレーニングに関係なく、同様のパフォーマンス変化をもたらし、異なるスキルに対するドメイン理解の欠如を示唆している。
- 参考スコア(独自算出の注目度): 58.09253149867228
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We are beginning to see progress in language model assisted scientific discovery. Motivated by the use of LLMs as a general scientific assistant, this paper assesses the domain knowledge of LLMs through its understanding of different mathematical skills required to solve problems. In particular, we look at not just what the pre-trained model already knows, but how it learned to learn from information during in-context learning or instruction-tuning through exploiting the complex knowledge structure within mathematics. Motivated by the Neural Tangent Kernel (NTK), we propose \textit{NTKEval} to assess changes in LLM's probability distribution via training on different kinds of math data. Our systematic analysis finds evidence of domain understanding during in-context learning. By contrast, certain instruction-tuning leads to similar performance changes irrespective of training on different data, suggesting a lack of domain understanding across different skills.
- Abstract(参考訳): 言語モデルによる科学的発見の進展を目の当たりにしています。
本稿では, LLMを一般科学アシスタントとして活用することで, 問題解決に必要な数学的スキルの理解を通じて, LLMのドメイン知識を評価する。
特に、事前学習されたモデルが既に知っていることだけでなく、数学の複雑な知識構造を利用して、文脈内学習や教示学習で情報から学習する方法を考察する。
ニューラル・タンジェント・カーネル (NTK) をモチベーションとして, 異なる種類の数学データを用いて学習することにより, LLMの確率分布の変化を評価するために, textit{NTKEval} を提案する。
系統的な分析では、文脈内学習中にドメイン理解の証拠が見つかる。
対照的に、特定の命令チューニングは、異なるデータでのトレーニングに関係なく、同様のパフォーマンス変化をもたらし、異なるスキルにわたるドメイン理解の欠如を示唆している。
関連論文リスト
- Sparse Autoencoders Reveal Temporal Difference Learning in Large Language Models [7.115323364355489]
インコンテキスト学習(In-context learning)は、入力プロンプトのいくつかの例に基づいて適応する能力であり、大きな言語モデル(LLM)のユビキタスな特徴である。
最初に、Llamaが$70$Bで、コンテキスト内で単純なRL問題を解くことができることを示す。
次に、スパースオートエンコーダ(SAE)を用いてLlamaの残差ストリームを分析し、時間差(TD)誤差によく一致する表現を求める。
論文 参考訳(メタデータ) (2024-10-02T06:51:12Z) - Dynamics of Supervised and Reinforcement Learning in the Non-Linear Perceptron [3.069335774032178]
学習を記述するフロー方程式を導出するために,データセット処理アプローチを用いる。
学習ルール(教師付きまたは強化学習,SL/RL)と入力データ分布が知覚者の学習曲線に及ぼす影響を特徴付ける。
このアプローチは、より複雑な回路アーキテクチャの学習力学を解析する方法を示している。
論文 参考訳(メタデータ) (2024-09-05T17:58:28Z) - Chain-of-Knowledge: Integrating Knowledge Reasoning into Large Language Models by Learning from Knowledge Graphs [55.317267269115845]
Chain-of-Knowledge (CoK)は知識推論のための包括的なフレームワークである。
CoKにはデータセット構築とモデル学習の両方のための方法論が含まれている。
KnowReasonで広範な実験を行う。
論文 参考訳(メタデータ) (2024-06-30T10:49:32Z) - Large Language Models are Limited in Out-of-Context Knowledge Reasoning [65.72847298578071]
大規模言語モデル (LLMs) は、文脈内推論の実行において広範な知識と強力な能力を持っている。
本稿では、複数の知識を組み合わせて新しい知識を推論する、文脈外知識推論(OCKR)という、文脈外推論の重要な側面に焦点を当てる。
論文 参考訳(メタデータ) (2024-06-11T15:58:59Z) - Towards Reliable Latent Knowledge Estimation in LLMs: In-Context Learning vs. Prompting Based Factual Knowledge Extraction [15.534647327246239]
大規模言語モデル(LLM)に埋め込まれた潜在知識を推定する手法を提案する。
我々は、LLMの文脈内学習能力を活用し、LLMが知識ベースに格納されている事実を知る範囲を推定する。
論文 参考訳(メタデータ) (2024-04-19T15:40:39Z) - A Comprehensive Study of Knowledge Editing for Large Language Models [82.65729336401027]
大規模言語モデル(LLM)は、人間のコミュニケーションを忠実に反映したテキストの理解と生成の素晴らしい能力を示している。
本稿では,知識編集の問題を定義し,最先端アプローチの包括的レビューを行う。
我々は,代表的知識編集アプローチの総合的評価のための新しいベンチマークであるKnowEditを紹介した。
論文 参考訳(メタデータ) (2024-01-02T16:54:58Z) - MechGPT, a language-based strategy for mechanics and materials modeling
that connects knowledge across scales, disciplines and modalities [0.0]
我々は,Large Language Model (LLM) を用いて,質問応答対を原料から抽出し,微調整する。
得られたMechGPT LLM基盤モデルは、知識検索、様々な言語タスク、仮説生成、異なる領域にわたる知識の接続能力を調べるために、一連の計算実験で使用される。
論文 参考訳(メタデータ) (2023-10-16T14:29:35Z) - Can LMs Learn New Entities from Descriptions? Challenges in Propagating
Injected Knowledge [72.63368052592004]
我々は、注入された事実に基づいて推論を行う(またはそれらの事実を伝播する)LMの能力について研究する。
既存の知識更新手法では,注入知識の伝播がほとんどないことがわかった。
しかし、LMのコンテキストにおけるエンティティ定義の予測は、すべての設定におけるパフォーマンスを改善する。
論文 参考訳(メタデータ) (2023-05-02T17:59:46Z) - Anti-Retroactive Interference for Lifelong Learning [65.50683752919089]
我々は脳のメタラーニングと連想機構に基づく生涯学習のパラダイムを設計する。
知識の抽出と知識の記憶という2つの側面から問題に取り組む。
提案した学習パラダイムが,異なるタスクのモデルを同じ最適に収束させることができることを理論的に分析した。
論文 参考訳(メタデータ) (2022-08-27T09:27:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。